CERN, 14-16 November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Development of 3D silicon detectors at ITC-irst Claudio Piemonte ITC-irst Trento
Silicon Technical Specifications Review General Properties Geometrical Specifications Technology Specifications –Mask –Test Structures –Mechanical –Electrical.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFETs SD Lab. SOGANG Univ. Doohyung Cho.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006, Barcelona, Spain Giulio Pellegrini 4th SILC Collaboration Meeting, Dec. 2006,
128 September, 2005 Silicon Sensor for the CMS Tracker The Silicon Sensors for the Inner Tracker of CMS CMS Tracker and it‘s Silicon Strip Sensors Radiation.
Solid State Detectors-2
Characterization of 150  m thick epitaxial silicon pad detectors from different producers after 24 GeV/c proton irradiation Herbert Hoedlmoser (1), Michael.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Embedded Pitch Adapters a high-yield interconnection solution for strip sensors M. Ullán, C. Fleta, X. Fernández-Tejero, V. Benítez CNM (Barcelona)
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Haga clic para modificar el estilo de texto del patrón Progress on p-type isolation technology M. Lozano, F. Campabadal, C. Fleta, S. Martí *, M. Miñano.
Silicon pad detectors for LCCAL: characterisation and first results Antonio Bulgheroni University of Milan – Italy on behalf of LCCAL: Official INFN R&D.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
Development of n-in-p planar pixel sensors with active edge for the ATLAS High-Luminosity Upgrade L. Bosisio* Università degli Studi di Trieste & INFN.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
SILICON DETECTORS PART I Characteristics on semiconductors.
M. Bruzzi, the issue of p-type disuniformity, 7° RD50 Workshop, CERN, November 14-16, 2005 The issue of doping disuniformity in p-type MCz Si sensors M.
M. Lozano, C. Fleta*, G. Pellegrini, M. Ullán, F. Campabadal, J. M. Rafí CNM-IMB (CSIC), Barcelona, Spain (*) Currently at University of Glasgow, UK S.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
Silicon detector processing and technology: Part II
16 sept G.-F. Dalla BettaSCIPP Maurizio Boscardin a, Claudio Piemonte a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta.
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
Budapest University of Technology and Economics Department of Electron Devices Solution of the 1 st mid-term test 20 October 2009.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
N. Zorzi Trento, Feb 28 – Mar 1, 2005 Workshop on p-type detectors Characterization of n-on-p devices fabricated at ITC-irst Nicola Zorzi ITC-irst - Trento.
Simulations of 3D detectors
Update on TCAD Simulation Mathieu Benoit. Introduction The Synopsis Sentaurus Simulation tool – Licenses at CERN – Integration in LXBatch vs Engineering.
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
SMART Study of radiation damage induced by 24GeV/c and 26MeV protons on heavily irradiated MCz and FZ silicon detectors V. Radicci Dipartimento Interateneo.
Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September Magnetic Czochralski silicon as detector material J. Härkönen, E. Tuovinen,
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Studies on n and p-type MCz and FZ structures of the SMART Collaboration irradiated at fluences from 1.0 E+14 to 5.6E+15 p cm -2 RD50 Trento Workshop ITC-IRST.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Sabina Ronchin 1, Maurizio Boscardin 1, Nicola Zorzi 1, Gabriele Giacomini 1, Gian-Franco Dalla-Betta 2, Marco Povoli 3, Alberto Quaranta 2 ; Giorgio Ciaghi.
Latest news on 3D detectors IRST CNM IceMos. CNM 2 wafers fabricated Double side processing with holes not all the way through, (aka Irst) n-type bulk.
Trench detectors for enhanced charge multiplication G. Casse, D. Forshaw, M. Lozano, G. Pellegrini G. Casse, 7th Trento Meeting - 29/02 Ljubljana1.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
Giulio Pellegrini 12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, Ljubljana, Slovenia, 2-4 June 2008 Report.
New Mask and vendor for 3D detectors
Pilot run – matrix measurements after first metal
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Irradiation and annealing study of 3D p-type strip detectors
Position Sensitive TCT Measurements with 3D-stc detectors
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Study of radiation damage induced by 24/c GeV and 26MeV protons on heavily irradiated MCz and FZ silicon detectors N. Manna Dipartimento Interateneo di.
Homogeneity and thermal donors in p-type MCz-Si detector materials
Sensor Wafer: Final Layout
Report from CNM activities
Production of 3D silicon pixel sensors at FBK for the ATLAS IBL
TCAD Simulations of Silicon Detectors operating at High Fluences D
Optional Reading: Pierret 4; Hu 3
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
Enhanced Lateral Drift (ELAD) sensors
3D sensors: status and plans for the ACTIVE project
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco Dalla Betta b, Luciano Bosisio c \ a ITC-irst, Microsystems Division, via Sommarive 18, Povo di Trento, Italy b University of Trento, DIT, Trento, Italy c Physics Department, University of Trieste and INFN, Trieste, Italy First electrical characterization of 3D detectors with electrodes of the same doping type

Claudio Piemonte RD50 workshop CERN, November 2005 Single-Type Column 3D detector concept Fabrication of 3D-STC detectors Layout and preliminary electrical results Conclusions Outline

Claudio Piemonte RD50 workshop CERN, November 2005 STC-3D detectors - concept (1) Sketch of the detector: grid-like bulk contact ionizing particle cross-section between two electrodes n+n+ n+n+ electrons are swept away by the transversal field holes drift in the central region and diffuse towards p+ contact n + -columns p-type substrate Adv. over standard 3D: etching and column doping performed only once Functioning: [C. Piemonte et al, Nucl. Instr. Meth. A 541 (2005)]

Claudio Piemonte RD50 workshop CERN, November DSTC detectors - concept (2) Further simplification: holes not etched all through the wafer p-type substrate n + electrodes Uniform p+ layer Bulk contact is provided by a backside uniform p+ implant single side process. No need of support wafer.

Claudio Piemonte RD50 workshop CERN, November 2005 Potential distribution (vertical cross-section) Potential distribution (horizontal cross-section) null field regions 0V -10V -5V 50  m 300  m -15V Drawbacks: once full depletion is reached it is not possible to increase the electric field between the columns large low field region 3DSTC detectors - 3D simulations Both can be improved using higher substrate doping concentration

Claudio Piemonte RD50 workshop CERN, November 2005 Fabrication process (1) n+ diffusion contact metal oxide hole MAIN STEPS: 1. Hole etching with Deep RIE machine (step performed at CNM, Barcelona, Spain) 2. n+ diffusion (column doping) 3. passivation of holes with oxide 4. contact opening 5. metallization 10  m Hole depth: 120μm CHOICES FOR THIS PRODUCTION: No hole filling (with polysilicon) Holes are not etched all through the wafer Bulk contact provided by a uniform p+ implant

Claudio Piemonte RD50 workshop CERN, November 2005 Si High Resistivity, p-type, Surface isolation: p-stop p-spray FZ (500  m) resistivity > 5.0 k  cm Cz (300  m) resistivity > 1.8 k  cm Substrates used for this production: Sintering 420˚C for FZ 380˚C for Cz to minimize thermal donor activation Fabrication process (2)

Claudio Piemonte RD50 workshop CERN, November 2005 Mask layout Small version of strip detectors Planar and 3D test structures “Low density layout” to increase mechanical robustness of the wafer “Large” strip-like detectors

Claudio Piemonte RD50 workshop CERN, November 2005 Planar test structures measurements Standard planar test structures Electrical parameters compatible with standard planar processes High variation due to different substrates Ileak measured below full depletion due to Vbreak

Claudio Piemonte RD50 workshop CERN, November D diode – layout: Different 3D-diode layouts: Different isolation geometry (p-stop) Different column connections Different inter-colum distances (ranging from 80μm to 100μm) Bulk Guard ring p-stop 10x10 holes matrix Single hole p-stop p-stop around the entire region

Claudio Piemonte RD50 workshop CERN, November D diode – IV measurements: Vback Guard ring (n+) p-spray Depletion region High field region diode ─ guard ring p-stop case diode ─ guard ring 1 st punch through 2 nd punch through diode ─ guard ring p-spray case Breakdown Vback Guard ring (n+) p-stops e - layer - Depletion region I leak = 0.68 ± V I leak = 0.59 ± V

Claudio Piemonte RD50 workshop CERN, November D diode – CV measurements (preliminary) (preliminary) Capacitance measurement versus back on a 300  m thick wafer with ~150  m deep columns, 100  m picth Back 1/C V bias [V] C diode [pF] V bias [V] C -2 [pF -2 ] 1 2 Phase 1 Phase 2 region between col. is not fully depleted  large capacitance full dep. between columns ~ 7V region between col. is fully depleted  depletion proceeds only towards the back (almost like a planar diode) full depletion ~40V depletion width of ~150  m CdCd 1/C d 2 [pF -2 ] C d [pF] f=10kHz

Claudio Piemonte RD50 workshop CERN, November 2005 detectors - layout Strip detectors - layout metal p-stop hole Contact opening n+n+ Inner guard ring (bias line)

Claudio Piemonte RD50 workshop CERN, November 2005 Two different p-stop layouts: Strip detectors – layout: Different strip-detector layouts: Number of columns ranging from to Inter-columns pitch  m Holes Ø 6 or 10  m Single p-stop for each hole Common p-stop for each strip Punch-through structures AC coupling: DC coupling: DC pads

Claudio Piemonte RD50 workshop CERN, November 2005 Current 40V of 70 different devices Good process yield Strip detectors – IV measurements: p-spray p-stop Bias line Guard ring Average leakage current per column < 1pA Number of columns per detector: >50 I bias line [nA] Detectors count Leakage current < 1pA/column in most of the detectors

Claudio Piemonte RD50 workshop CERN, November 2005 Conclusion The first production has proved: The feasibility of 3D-stc detectors Low leakage currents (< 1pA/column) 50V for p-spray and >100V for p-stop structures Good process yield (typical detector current < 1pA/column) Samples have been given to: Glasgow (UK): CCE measurements with  on 3D diodes SCIPP (USA): CCE measurements on large strips

Claudio Piemonte RD50 workshop CERN, November D-stc TCAD simulations Simulation of the electric field along a cut-line from the electrode to the center of the cell Na=1e12 1/cm 3 Na=5e12 1/cm 3 Na=1e13 1/cm 3 DRAWBACK: 3D-stc: once full depletion is reached it is not possible to increase the electric field between the columns Maximum electric field depends on substrate doping