To remember the difference between vertical and horizontal translations, think: “Add to y, go high.” “Add to x, go left.” Helpful Hint.

Slides:



Advertisements
Similar presentations
Transforming Linear Functions
Advertisements

Algebra Transforming Linear Functions
BELLWORK Give the coordinates of each transformation of (2, –3).
Section 2.6 – Families of Functions Different nonvertical lines have different slopes, or y-intercepts or both. They are graphs of different linear functions.
Transforming Linear Functions
1-3 Transforming Linear functions
2-6 Transforming Linear Functions
Chapter 3.4 Graphs and Transformations By Saho Takahashi.
Objective Transform polynomial functions..
The vertex of the parabola is at (h, k).
1 Transformations of Functions SECTION Learn the meaning of transformations. Use vertical or horizontal shifts to graph functions. Use reflections.
In Chapters 2 and 3, you studied linear functions of the form f(x) = mx + b. A quadratic function is a function that can be written in the form of f(x)
Table of Contents Functions: Transformations of Graphs Vertical Translation: The graph of f(x) + k appears.
In Lesson 1-8, you learned to transform functions by transforming each point. Transformations can also be expressed by using function notation.
Transforming Functions
Section 3.2 Notes Writing the equation of a function given the transformations to a parent function.
Relations and Functions Linear Equations Vocabulary: Relation Domain Range Function Function Notation Evaluating Functions No fractions! No decimals!
I can graph and transform absolute-value functions.
1 The graphs of many functions are transformations of the graphs of very basic functions. The graph of y = –x 2 is the reflection of the graph of y = x.
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Exploring Transformations
Transform quadratic functions.
Warm Up Identify the domain and range of each function.
2.2 b Writing equations in vertex form
Unit 5 – Linear Functions
An absolute-value function is a function whose rule contains an absolute-value expression. The graph of the parent absolute-value function f(x) = |x| has.
3-8 transforming polynomial functions
Holt Algebra Using Transformations to Graph Quadratic Functions Transform quadratic functions. Describe the effects of changes in the coefficients.
Absolute–Value Functions
Graph and transform absolute-value functions.
1-3:Transforming Functions English Casbarro Unit 1: Functions.
Transformations of Functions. Graphs of Common Functions See Table 1.4, pg 184. Characteristics of Functions: 1.Domain 2.Range 3.Intervals where its increasing,
Section 3.5 Graphing Techniques: Transformations.
The absolute-value parent function is composed of two linear pieces, one with a slope of –1 and one with a slope of 1. In Lesson 2-6, you transformed linear.
7-7 Warm Up Lesson Presentation Lesson Quiz Transforming Exponential
Transformations of Linear and Absolute Value Functions
How does each function compare to its parent function?
Warm Up Give the coordinates of each transformation of (2, –3). 4. reflection across the y-axis (–2, –3) 5. f(x) = 3(x + 5) – 1 6. f(x) = x 2 + 4x Evaluate.
Objectives Transform quadratic functions.
1. g(x) = -x g(x) = x 2 – 2 3. g(x)= 2 – 0.2x 4. g(x) = 2|x| – 2 5. g(x) = 2.2(x+ 2) 2 Algebra II 1.
Section 1.4 Transformations and Operations on Functions.
2.6 Families of Functions Sets of functions, called families, in what each function is a transformation of a special function called the parent. Linear.
1 PRECALCULUS Section 1.6 Graphical Transformations.
Warm Up If f(x)= 3x 2 + 2x, find f(3) and f(-2). Check Yourself! If g(x)= 4x 2 – 8x + 2 find g(-3)
Transformations of Functions. The vertex of the parabola is at (h, k).
Warm-Up Evaluate each expression for x = -2. 1) (x – 6) 2 4 minutes 2) x ) 7x 2 4) (7x) 2 5) -x 2 6) (-x) 2 7) -3x ) -(3x – 1) 2.
Transforming Linear Functions
Shifting, Reflecting, & Stretching Graphs 1.4. Six Most Commonly Used Functions in Algebra Constant f(x) = c Identity f(x) = x Absolute Value f(x) = |x|
Transforming Linear Functions
Warm Up For each translation of the point (–2, 5), give the coordinates of the translated point units down 2. 3 units right For each function, evaluate.
Transformations of Functions
Transformations of Functions
13 Algebra 1 NOTES Unit 13.
Using Transformations to Graph Quadratic Functions 5-1
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Absolute Value Functions
Absolute Value Functions and Graphs Lesson 2-7
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Warm Up – August 21, 2017 Find the x- and y-intercepts. X – 3y = 9
Objective Graph and transform |Absolute-Value | functions.
3-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Transforming Linear Functions
Objective Transform polynomial functions..
Objectives Transform linear functions.
Transforming Linear Functions
Absolute–Value Functions
Transformations of Functions
LEARNING GOALS FOR LESSON 2.6 Stretches/Compressions
15 – Transformations of Functions Calculator Required
Presentation transcript:

To remember the difference between vertical and horizontal translations, think: “Add to y, go high.” “Add to x, go left.” Helpful Hint

Example 1A: Translating and Reflecting Functions Let g(x) be the indicated transformation of f(x). Write the rule for g(x). f(x) = x – 2 , horizontal translation right 3 units Translating f(x) 3 units right subtracts 3 from each input value. g(x) = f(x – 3) Subtract 3 from the input of f(x). g(x) = (x – 3) – 2 Evaluate f at x – 3. g(x) = x – 5 Simplify.

Example 1 Continued Check Graph f(x) and g(x) on a graphing calculator. The slopes are the same, but the x-intercept has moved 3 units right from 2 to 5.

f(x) = 3x + 1; translation 2 units right Check It Out! Example 1a Let g(x) be the indicated transformation of f(x). Write the rule for g(x). f(x) = 3x + 1; translation 2 units right Translating f(x) 2 units right subtracts 2 from each input value. g(x) = f(x – 2) Subtract 2 from the input of f(x). g(x) = 3(x – 2) + 1 Evaluate f at x – 2. g(x) = 3x – 5 Simplify.

Check It Out! Example 1a Continued Check Graph f(x) and g(x) on a graphing calculator. The slopes are the same, but the y-intercept has moved 6 units down from 1 to –5.

Example 1B: Translating Reflecting Functions Let g(x) be the indicated transformation of f(x). Write the rule for g(x). x –2 2 f(x) 1 linear function defined in the table; reflection across x-axis

x –2 2 f(x) 1 Example 1B Continued Step 1 Write the rule for f(x) in slope-intercept form. x –2 2 f(x) 1 The y-intercept is 1. The table contains (0, 1). Find the slope: Use (0, 1) and (2, 2). y = mx + b Slope-intercept form. Substitute for m and 1 for b. Replace y with f(x).

Step 2 Write the rule for g(x). Reflecting f(x) across the Example 1B Continued Step 2 Write the rule for g(x). Reflecting f(x) across the x-axis replaces each y with –y. g(x) = –f(x)

Example 1B Continued Check Graph f(x) and g(x) on a graphing calculator. The lines are symmetric about the x-axis.

Stretches and compressions change the slope of a linear function Stretches and compressions change the slope of a linear function. If the line becomes steeper, the function has been stretched vertically or compressed horizontally. If the line becomes flatter, the function has been compressed vertically or stretched horizontally.

These don’t change! y–intercepts in a horizontal stretch or compression x–intercepts in a vertical stretch or compression Helpful Hint

Example 2: Stretching and Compressing Linear Functions Let g(x) be a horizontal compression of f(x) = –x + 4 by a factor of . Write the rule for g(x), and graph the function. Horizontally compressing f(x) by a factor of replaces each x with where b = . .

Example 2A Continued = –(2x) +4 g(x) = –2x +4 For horizontal compression, use . Substitute for b. = –(2x) +4 Replace x with 2x. g(x) = –2x +4 Simplify.

Example 2A Continued Check Graph both functions on the same coordinate plane. The graph of g(x) is steeper than f(x), which indicates that g(x) has been horizontally compressed from f(x), or pushed toward the y-axis.

Check It Out! Example 2 Let g(x) be a vertical compression of f(x) = 3x + 2 by a factor of . Write the rule for g(x) and graph the function. Vertically compressing f(x) by a factor of replaces each f(x) with a · f(x) where a = .

Check It Out! Example 2 Continued g(x) = a(3x + 2) For vertical compression, use a. = (3x + 2) Substitute for a. Simplify.

Graph both functions on the same coordinate plane Graph both functions on the same coordinate plane. The graph of g(x) is less steep than f(x), which indicates that g(x) has been vertically compressed from f(x), or compressed towards the x-axis.

Example 3: Combining Transformations of Linear Functions Let g(x) be a horizontal shift of f(x) = 3x left 6 units followed by a horizontal stretch by a factor of 4. Write the rule for g(x). Step 1 First perform the translation. Translating f(x) = 3x left 6 units adds 6 to each input value. You can use h(x) to represent the translated function. h(x) = f(x + 6) Add 6 to the input value. h(x) = 3(x + 6) Evaluate f at x + 6. h(x) = 3x + 18 Distribute.

Example 3 Continued Step 2 Then perform the stretch. Stretching h(x) horizontally by a factor of 4 replaces each x with where b = 4. For horizontal compression, use . Substitute 4 for b. Simplify.