Jeanne Wilson IoP HEPP 2013, Liverpool 8/4/2013 Non-Accelerator Neutrino Physics* *Excluding neutrino mass measurements Some ^

Slides:



Advertisements
Similar presentations
The SNO+ Experiment: Overview and Status
Advertisements

R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Expected Sensitivity of the NO A  Disappearance Analysis Kirk Bays (Caltech) for the NO A Collaboration April 14, 2013 APS DPF Denver Kirk Bays, APS DPF.
Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
New Large* Neutrino Detectors
Results from Daya Bay Xin Qian On behalf of Daya Bay Collaboration Xin Qian, BNL1.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Recent results from Borexino
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Neutrino Physics - Lecture 5 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Results and Future of the KamLAND Experiment
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Atmospheric Neutrinos
SNO+ Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
SNO Liquid Scintillator Project NOW September 2004 Mark Chen Queen’s University & The Canadian Institute for Advanced Research.
Studies on PINGU’s Sensitivity to the Neutrino mass Hierarchy P. Berghaus, H.P. Bretz, A. Groß, A. Kappes, J. Leute, S. Odrowski, E. Resconi, R. Shanidze.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Results for the Neutrino Mixing Angle  13 from RENO International School of Nuclear Physics, 35 th Course Neutrino Physics: Present and Future, Erice/Sicily,
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Solar Neutrino Results from SNO
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Aldo Ianni for the Borexino collaboration 12th International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Zurich, 7 th Nov 2011.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
Results on  13 Neutrino Oscillations from Reactor Experiments Soo-Bong Kim (KNRC, Seoul National University) “INPC 2013, Firenze, June 2-7, 2013”
NEUTRINO OSCILLATION MEASUREMENTS WITH REACTORS
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
Solar Neutrino Problem
Daya Bay Neutrino Experiment
Davide Franco for the Borexino Collaboration Milano University & INFN
Low Energy Neutrino Astrophysics
Presentation transcript:

Jeanne Wilson IoP HEPP 2013, Liverpool 8/4/2013 Non-Accelerator Neutrino Physics* *Excluding neutrino mass measurements Some ^

Content Probing neutrino properties Reactor neutrinos: θ 13, Δm 12, reactor anomaly Low energy solar neutrinos: LMA, MSW, new physics Mass hierarchy Probing neutrino sources SuperNova physics Geo Neutrinos Solar Physics Core metallicity Luminosity constraint 08/04/2013 J. Wilson, Non-accelerator neutrino physics 2

Experiments SNO+ (780t LS) Borexino(280t LS), KamLAND (1kt LS) Daya Bay, RENO, Double Chooz (Gd-LS) Proposed experiments: LAGUNA: Memphis (100kt H 2 O Cerenkov) Glacier (100kt liquid Ar) LENA (5kt LS) HyperKamiokande (H 2 O Cerenkov) Daya Bay II (20kt LS) SuperK (H 2 O Cerenkov), IceCube/DeepCore/PINGU (Ice Cerenkov), KM3NeT(sea Cerenkov), Anita (Balloon radio), Askaryan Radio Array* (*Track 4 talk by J Davies) 08/04/2013 J. Wilson, Non-accelerator neutrino physics 3

780 tonnes linear alkyl benzene (LAB) liquid scintillator Low energy threshold for solar measurements Separate phase: Isotope loading for 0νββ measurement 2km underground, 6000 mwe Ultra-low CR μ background No 11 C ~9500 PMTs ~7 ktonne H 2 O shielding 12m diameter acrylic vessel (AV) 4 LS Detector: SNO+ Very low backgrounds U, Th < g/g ν e,x + e -  e,x + e - ν e + p  n + e +

SNO+ status 08/04/2013 J. Wilson, Non-accelerator neutrino physics 5 Water fill about to start, LAB fill start of 2014 Parallel session talks: M. Mottram I. Coulter J. Sinclair Posters A. Back & K. Majumdar

Reactor Neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 6

Reactor neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 7 ν 1 -ν 3 Daya Bay RENO Double Chooz ν 1 -ν 2 Non-vacuum KamLAND SNO+ ν e + p  n + e +

08/04/2013 J. Wilson, Non-accelerator neutrino physics 8 Reactor power: 6×2.9GW Θ 13 >0 significance: 7.7σ Far Detectors: 1 Near Detectors: 2 Analysis type: rate Reactor power: 6×2.8GW Θ 13 >0 significance: 4.9σ Far Detectors: 1 Near Detectors: 1 Analysis type: rate Reactor power:2×4.25GW Θ 13 >0 significance: 2.9σ Far Detectors: 1 Near Detectors: 0 (1) Analysis: rate+spectrum

Experiment sin 2 2  13 stat.syst. RENO ± 0.010± Daya Bay ± 0.010± Dbl Chooz H ± Dbl Chooz Gd ± 0.030± Rate + Shape Daya Bay, RENO, Double Chooz RENODouble ChoozDaya Bay Rate only

08/04/2013 J. Wilson, Non-accelerator neutrino physics 10 Size: 780 ton nPMTs: ~9500 Depth: 6000 m.w.e. E resolution: 5%/√E 1 st data: 2014 Size: 1kton nPMTs: 2100 Depth: 2700m.w.e. E resolution: 7.5%/√E 1 st data: March 2002

Reactors – Δm 2 12 (Θ 12 ) 08/04/2013 J. Wilson, Non-accelerator neutrino physics 11 KamLAND Phys. Rev. Lett. 100, (2008) arXiv: arXiv: Non vacuum oscillations SNO+ should see clear dip

Reactor Anomaly Experiments at <100m from reactors measure ν fluxes ~0.94×prediction (deviates from 98.6% C.L.) Fourth non-standard ν state driving oscillations at short distances? Phys.Rev.D83:073006, /04/2013 J. Wilson, Non-accelerator neutrino physics 12

08/04/2013 J. Wilson, Non-accelerator neutrino physics 13

Solar Neutrino Physics 08/04/2013 J. Wilson, Non-accelerator neutrino physics 14

Solar Neutrino Oscillations - status 08/04/2013 J. Wilson, Non-accelerator neutrino physics 15 MSW Vacuum oscillations Mixing parameters: (LMA) Δm 2 12 = 7.59±0.21×10 -5 eV 2 ϑ 12 = 34° ± 1°

Solar Neutrino Oscillations - status 08/04/2013 J. Wilson, Non-accelerator neutrino physics 16 Δm 2 12 and θ 12 suggest MSW but direct evidence would be nice Day-Night asymmetry Spectral distortion of 8 B νs SNO:

Solar Neutrino Oscillations - status 08/04/2013 J. Wilson, Non-accelerator neutrino physics 17 Non- standard interactions Friedland, Lunardini & Pena-Garay hep-ph/ Mass Varying neutrinos Barger, Huber, Marfatia, hep-ph/ Δm 2 12 and θ 12 suggest MSW but direct evidence would be nice Day-Night asymmetry Spectral distortion of 8 B νs

Solar Neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 18 p + e - + p  2 H + ν e

A question of depth: 11 C 08/04/2013 J. Wilson, Non-accelerator neutrino physics 19

Borexino 08/04/2013 J. Wilson, Non-accelerator neutrino physics LNGS, 3800 mwe 300 tonnes LS 2200 PMTs

Is LMA the full story? 08/04/2013 J. Wilson, Non-accelerator neutrino physics 21 Phys. Rev. Lett. Volume 108, Issue 5, (2012) arXiv: arXiv:

A question of depth: 11 C 08/04/2013 J. Wilson, Non-accelerator neutrino physics 22

SNO+ Solar signals 08/04/2013 J. Wilson, Non-accelerator neutrino physics 23 Assuming Borexino- level backgrounds are reached 8 B sensitivity 1 year = 7.5% 2 years = 5.4% Borexino backgrounds: U: 1.6× g/g Th: 6.8× g/g K: < g/g 14 C: ~2× g/g

SNO+ solar signals: low E 08/04/2013 J. Wilson, Non-accelerator neutrino physics 24 Assuming Borexino- level backgrounds are reached

SNO+ solar signals 08/04/2013 J. Wilson, Non-accelerator neutrino physics 25 Assuming Borexino- level backgrounds are reached 1 year data, 50% FV Pep sensitivity 1 year = 9.1% 2 years = 6.5%

Neutrino Mass Heirarchy Daya Bay 2 20kTon LS detector 60km from Daya Bay reactors (on θ 12 oscillation maximum) Look for effects of Δm 23 on θ 12 oscillation Fourier transform analysis 08/04/2013 J. Wilson, Non-accelerator neutrino physics 26

Neutrino Mass Heirarchy Daya Bay 2 20kTon LS detector 60km from Daya Bay reactors (on θ 12 oscillation maximum) Look for effects of Δm 23 on θ 12 oscillation Fourier transform analysis PINGU Increase detector density in Antarctic Ice cherenkov experiment for sensitivity down to 1GeV atmospheric neutrinos hierarchy sensitivity through neutrino/anti-neutrino asymmetries and matter oscillation effects Super-Kamiokande Supernovae neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 27

Neutrino messengers Ask not what we can learn of the neutrinos, ask what the neutrinos can do for us 08/04/2013 J. Wilson, Non-accelerator neutrino physics 28

SuperNova Neutrino Physics 08/04/2013 J. Wilson, Non-accelerator neutrino physics 29

Supernova Physics Need spectral coverage of all neutrino flavours to disentangle oscillation and SN effects Much interest in proton scattering Phys.Rev.D83 arXiv: arXiv: /04/2013 J. Wilson, Non-accelerator neutrino physics 30 Events in SNO+, E>0.2MeV

GeoPhysics 08/04/2013 J. Wilson, Non-accelerator neutrino physics 31 Assay the Earth by looking at its neutrino glow Radiogenic contribution to heat flow and energetics in the deep earth. Test basic models of crust composition

GeoPhysics 08/04/2013 J. Wilson, Non-accelerator neutrino physics 32

GeoPhysics 08/04/2013 J. Wilson, Non-accelerator neutrino physics 33 SNO+ more geoν than KamLAND continental vs oceanic crust SNO+ less reactor ν than KamLAND

Solar Physics pp neutrinos: p+p  2 D + e + +ν e highest flux, smallest theoretical uncertainty CNO neutrinos: test solar core metallicity Large uncertainty in solar models 08/04/2013 J. Wilson, Non-accelerator neutrino physics 34

DBD Measurements As a direct result of work initiated at Oxford, the SNO+ collaboration has identified a more favourable isotope to load into the liquid scintillator for high sensitivity to 0νββ. Following the development of a new metal loading technique and purification method by colleagues at BNL, and a thorough independent internal review of the Oxford/Queens' proposal completed last month (March), the collaboration has decided to pursue the deployment of 130 Te as the primary target isotope for double beta decay. We are planning for an initial loading corresponding to 800kg of 130 Te (0.3%) to begin in Following a successful demonstration of this phase and pending results from the continuing R&D effort, we would then aim to increase the loading to the multi-tonne scale as soon as is feasible, with the goal of achieving sensitivity near the bottom of the inverted neutrino mass hierarchy. 08/04/2013 J. Wilson, Non-accelerator neutrino physics 35

08/04/2013 J. Wilson, Non-accelerator neutrino physics 36

Summary Reactors, Solar, SN neutrinos useful tools to probe neutrino properties Neutrinos becoming useful tools to understand neutrino sources It’s hard – need big, deep, multi-purpose experiments. Balancing act against other purposes SNO+ to focus on 0νββ with 130 Te Apologies for everything I missed out: Atmospheric νs, SuperNova relicνs, AGNs, GRBs, … 08/04/2013 J. Wilson, Non-accelerator neutrino physics 37

Backup slides 08/04/2013 J. Wilson, Non-accelerator neutrino physics 38

Reactor θ 13 08/04/2013 J. Wilson, Non-accelerator neutrino physics 39

Extra-terrestrial neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 40 ks/Koskinen-INFO11.pdf

Solar Neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 41

Solar neutrinos 08/04/2013 J. Wilson, Non-accelerator neutrino physics 42

Other Low E Backgrounds 08/04/2013 J. Wilson, Non-accelerator neutrino physics 43

SNO+ Solar Prospects SNO+ has decided to prioritise 0νββ Radon daughters have accumulated on the surface of the AV over the last few years in a significant way. If these leach into the scintillator, the purification system has the capability to remove them. However, depending on the actual leach rate, that removal might be inefficient and the 210 Bi levels in the scintillator too high for a pep/CNO solar neutrino measurement without further mitigation. Mitigation could include enhancing online scintillator purification, draining the detector and sanding the AV surface to remove radon daughters, or deploying a bag. 0νββ and low-energy 8B solar neutrino measurements are not affected by these backgrounds 08/04/2013 J. Wilson, Non-accelerator neutrino physics 44

SNO+ solar signals 08/04/2013 J. Wilson, Non-accelerator neutrino physics 45 Assuming Borexino- level backgrounds are reached

SNO+ solar signals 08/04/2013 J. Wilson, Non-accelerator neutrino physics 46 Assuming Borexino- level backgrounds are reached

SNO+ solar signals 08/04/2013 J. Wilson, Non-accelerator neutrino physics 47 Pep sensitivity 1 year = 9.1% 2 years = 6.5% Assuming Borexino- level backgrounds are reached

GeoPhysics KamLAND and Borexino combined: 20 ±9 TW from U & Th 08/04/2013 J. Wilson, Non-accelerator neutrino physics 48

SuperNova Neutrino Physics Challenge to decouple details of SN model from neutrino physics. model ~independent handles on mass hierarchy (θ 13 large): Modulations in νspectra by day-night effect -> IH arXiv: hep-ph , Fast O (100ms) rise-time of ν e lightcurve prefers IH arXiv: /04/2013 J. Wilson, Non-accelerator neutrino physics 49

Solar Physics – core metallicity Tension helioseismology  photosphere spectroscopy Use SNO 8B to constrain environmental variables (core T) Measure CNO flux and compare to solar models to differentiate high and low metallicity 08/04/2013 J. Wilson, Non-accelerator neutrino physics 50 A la Haxton and Serenelli arXiv:

Solar Physics – CNO neutrinos 210 Bi 210 Po 206 Pb 08/04/2013 J. Wilson, Non-accelerator neutrino physics 51 CNO sensitivity ~15% β, T ½ ≈5days 5.3MeV α, T ½ ≈138days Examine time evolution of 210 Po α rate

Experiment sin 2 2  13 stat.syst. RENO ± 0.013± Daya Bay ± 0.010± Dbl Chooz H ± Dbl Chooz Gd ± 0.030± Rate + Shape Daya Bay, RENO, Double Chooz RENODouble ChoozDaya Bay Rate only