Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-4 Process Communication Department of Computer Science and Software.

Slides:



Advertisements
Similar presentations
Processes Management.
Advertisements

IPC (Interprocess Communication)
Operating Systems Lecture 7.
©2009 Operačné systémy Procesy. 3.2 ©2009 Operačné systémy Process in Memory.
Dr. Kalpakis CMSC 421, Operating Systems. Fall Processes.
Cooperating Processes Independent process cannot affect or be affected by the execution of another process. Cooperating process can affect or be affected.
Abhinav Kamra Computer Science, Columbia University 4.1 Operating System Concepts Silberschatz, Galvin and Gagne  2002 Chapter 4: Processes Process Concept.
Adapted from slides ©2005 Silberschatz, Galvin, and Gagne Lecture 4: Processes.
Chapter 3: Processes.
Chapter 3 Processes.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 3: Processes.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7 th Edition, Feb 7, 2006 Chapter 3: Processes Process Concept.
1/30/2004CSCI 315 Operating Systems Design1 Processes Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating.
Process Concept n An operating system executes a variety of programs: –Batch system – jobs –Time-shared systems – user programs or tasks n Textbook uses.
Chapter 3: Processes. Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server.
02/02/2004CSCI 315 Operating Systems Design1 Interprocesses Communication Notice: The slides for this lecture have been largely based on those accompanying.
What we will cover…  Processes  Process Concept  Process Scheduling  Operations on Processes  Interprocess Communication  Communication in Client-Server.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 4: Processes Process Concept Process Scheduling Operations on Processes Cooperating.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7 th Edition, Feb 7, 2006 Chapter 3: Processes Process Concept.
02/01/2010CSCI 315 Operating Systems Design1 Interprocess Communication Notice: The slides for this lecture have been largely based on those accompanying.
1/26/2007CSCI 315 Operating Systems Design1 Processes Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating.
Interprocess Communication. Process Concepts Last class.
Inter-process communication
Inter-Process Communication Mechanisms CSE331 Operating Systems Design.
Silberschatz and Galvin  Operating System Concepts Module 4: Processes Process Concept Process Scheduling Operation on Processes Cooperating.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 3: Processes Process Concept Process Scheduling Operations.
Chap 3 Processes-Concept. Process Concept Process – a program in execution; process execution must progress in sequential fashion A process includes:
Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server Systems.
Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication in Client-Server.
Silberschatz, Galvin and Gagne  Operating System Concepts Cooperating Processes Independent process cannot affect or be affected by the execution.
Chapter 4: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 3: Processes.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 4 Process Slide 1 Chapter 4 Process.
1 Lecture 5 (part2) : “Interprocess communication” n reasons for process cooperation n types of message passing n direct and indirect message passing n.
AE4B33OSS Chapter 3: Processes. 3.2Silberschatz, Galvin and Gagne ©2005AE4B33OSS Chapter 3: Processes Process Concept Process Scheduling Operations on.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7 th Edition, Feb 7, 2006 Outline n Process Concept n Process.
Chapter 3: Processes (6 th edition chap 4). 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 3: Processes Process Concept Process.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 3: Processes Process Concept Process Scheduling Operations.
Chapter 3: Processes. 3.2CSCI 380 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication.
1 11/1/2015 Chapter 4: Processes l Process Concept l Process Scheduling l Operations on Processes l Cooperating Processes l Interprocess Communication.
3.1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Interprocess Communication Processes within a system may be.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 3: Processes.
Processes. Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication.
Silberschatz, Galvin and Gagne ©2009 Edited by Khoury, 2015 Operating System Concepts – 9 th Edition, Chapter 3: Processes.
CS212: OPERATING SYSTEM Lecture 2: Process 1. Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 3: Process-Concept.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 3: Processes Process Concept Process Scheduling Operations.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 10 Processes II Read.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Lecture 3 Operating Systems.
PREPARED BY : MAZHAR JAVED AWAN BSCS-III Process Communication & Threads 4 December 2015.
Chapter 3: Process-Concept. Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication.
Operating Systems Yasir Kiani. 13-Sep Agenda for Today Review of previous lecture Interprocess communication (IPC) and process synchronization UNIX/Linux.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 4: Processes Process Concept Process Scheduling Operations on Processes Cooperating.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7 th Edition, Jan 19, 2005 Chapter 3: Processes Process Concept.
Chapter 3: Processes-Concept. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 3: Processes-Concept Overview Process Scheduling.
Processes. Process Concept Process Scheduling Operations on Processes Interprocess Communication Communication in Client-Server Systems.
 Process Concept  Process Scheduling  Operations on Processes  Cooperating Processes  Interprocess Communication  Communication in Client-Server.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 3: Processes Process Concept Process Scheduling Operations.
Chapter 4: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication in Client-Server.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 3: Process-Concept.
Chapter 3: Process-Concept. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 3: Process-Concept Process Concept Process Scheduling.
3.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Process Termination Process executes last statement and asks the operating.
4.1 Operating System Chapter 4: Processes Process Concept Process Scheduling Operations on Processes Cooperating Processes Interprocess Communication Communication.
Gokul Kishan CS8 1 Inter-Process Communication (IPC)
CSC 360, Instructor: Kui Wu IPC. CSC 360, Instructor: Kui Wu Agenda 1.The need to communicate 2.Shared memory 3.Message passing.
Chapter 3: Processes. 3.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7 th Edition, Feb 7, 2006 Chapter 3: Processes Process Concept.
XE33OSA Chapter 3: Processes. 3.2XE33OSASilberschatz, Galvin and Gagne ©2005 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes.
Chapter 4: Processes Process Concept Process Scheduling
Inter Process Communication (IPC)
Typically for using the shared memory the processes should:
Processes August 10, 2019 OS:Processes.
Presentation transcript:

Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-4 Process Communication Department of Computer Science and Software Engineering University of Wisconsin-Platteville

Outlines  Cooperating Process  Inter-Process Communication  Communication by Memory Sharing

Concurrency  Multiple applications  Multiprogramming  Structured application  Application can be a set of concurrent processes  Operating-system structure  Operating system is a set of processes or threads

Cooperating Processes  Process Types:  Independent process cannot affect or be affected by the execution of another process  Cooperating process can affect or be affected by the execution of another process  Advantages of process cooperation  Computation speed-up Improve performance by overlapping activities or performing work in parallel  Enable an application to have a better program structure as a set of cooperating processes  Information sharing

Cooperating Processes  Cooperating issues:  How do the processes communicate?  How do the processes share data?  Operating System Concerns:  Keep track of active processes  Allocate and de-allocate resources  Protect data and resources  Result of process must be independent of the speed of execution of other concurrent processes

Process Communications  Communication types:  Message passing : Inter-Process Communication (IPC)  Shared Memory

Inter-Process Communication  Mechanism for processes to communicate  IPC facility provides two operations:  send (message) – message size fixed or variable  receive (message)  The communicating processes can be (peer to peer) or (client-server)  If P and Q wish to communicate, they need to:  establish a communication link between them  exchange messages via send/receive

IPC Addressing: Direct  Processes must name each other explicitly:  send (P, message) – send a message to process P  receive (Q, message) – receive a message from process Q  Properties of communication link  Links are established automatically  A link is associated with exactly one pair of communicating processes  Between each pair there exists exactly one link  The link may be unidirectional, but is usually bi-directional

IPC Addressing: Indirect  Messages are directed and received from mailboxes (also referred to as ports)  Each mailbox has a unique ID  Processes can communicate only if they share a mailbox  Properties of communication link  Link established only if processes share a common mailbox  A link may be associated with many processes  Each pair of processes may share several communication links  Link may be unidirectional or bi-directional

IPC Addressing: Indirect  Operations  create a new mailbox  send and receive messages through mailbox  destroy a mailbox  Primitives are defined as: send(A, message) – send a message to mailbox A receive(A, message) – receive a message from mailbox A

IPC Addressing: Indirect  Mailbox sharing problem  P 1, P 2, and P 3 share mailbox A  P 1, sends; P 2 and P 3 receive  Who gets the message?  Solutions  Allow a link to be associated with at most two processes  Allow only one process at a time to execute a receive operation  Allow the system to select arbitrarily the receiver Sender is notified who the receiver was

IPC Synchronization  Process can:  block until the message is sent/received (blocking) - safer, easier to code, slower  proceed immediately (non-blocking) - faster, harder to code, riskier, needs OS support  Process can:  block until the message it sent is received (synchronous) - easier to code, deadlock, slower  proceed without receipt confirmation (asynchronous) - faster, needs message acknowledgement

IPC Link Buffering  Link Capacity : the number of message that can be temporarily queued in a given link  Zero capacity: (queue of length 0)  No messages wait  Sender must block until receiver receives the message  Limited capacity: (queue of length n)  If receiver’s queue is not full, new message is put on queue, and sender can continue executing immediately  If queue is full, sender must block until space is available in the queue  Unlimited capacity: (infinite queue)  Sender can always continue

Cooperation Among Processes by Memory Sharing  One process is a producer of information; another is a consumer of that information  Processes communicate through shared variables  Producer writes data to a shared buffer  Consumer reads data from the shared buffer  Shared buffer:  unbounded-buffer no practical limit on the size of the buffer  bounded-buffer there is a fixed buffer size  Synchronization problems  Critical section problem (next lecture)

Example: Bounded Buffer Shared data #define BUFFER_SIZE 10 typedef struct {... } item; item buffer[BUFFER_SIZE]; int in = 0; int out = 0; int counter = 0;

Example: Bounded Buffer Producer process item nextProduced; while (1) { while (counter == BUFFER_SIZE) ; /* do nothing */ buffer[in] = nextProduced; in = (in + 1) % BUFFER_SIZE; counter++; }

Example: Bounded Buffer Consumer process item nextConsumed; while (1) { while (counter == 0) ; /* do nothing */ nextConsumed = buffer[out]; out = (out + 1) % BUFFER_SIZE; counter--; }