BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN.

Slides:



Advertisements
Similar presentations
Status and Future of BESSY RF BESSY II operating since 1999 Willy Wien Laboratory groundbreaking 9/2004 HoBiCaT Testfacility for sc cavities Commissioning.
Advertisements

February 17-18, 2010 R&D ERL Dmitry Kayran R&D: G5 test and Commissioning Plan Eduard Pozdeyev, Dmitry Kayran BNL R&D ERL Review February 17-18, 2010 R&D.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
ERLP Overview Hywel Owen ASTeC Daresbury Laboratory.
BERLinPro The Berlin Energy Recovery Linac Project Why, How and Status
Does the short pulse mode need energy recovery? Rep. rateBeam 5GeV 100MHz 500MWAbsolutely 10MHz 50MW Maybe 1MHz 5MW 100kHz.
ERHIC Main Linac Design E. Pozdeyev + eRHIC team BNL.
1 Low-energy RHIC electron Cooler (LEReC) Update November 17, 2014.
David H. Dowell Injector Physics/Diagnostics/Gun&L0 RF April 29-30, 2004 Injector Physics / Diagnostics / Gun & L0 Linac.
News from HZB / BESSY Wolfgang Anders at ESLS-RF Meeting September 2010 Trieste.
1 Low-energy RHIC electron Cooler (LEReC) cost estimate December 2, 2014.
Low Emittance RF Gun Developments for PAL-XFEL
~ gun3.9 GHz cavity Bunch compressor 3 ILC cryomodules 45 deg. spectro injector main linac user area disp. area transport line Overview of.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
Overview of ERL MEIC Cooler Design Studies S.V. Benson, Y. Derbenev, D.R. Douglas, F. Hannon, F. Marhauser, R. A Rimmer, C.D. Tennant, H. Zhang, H. Wang,
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
2015 LHeC Coordination Group meeting 2 nd October 2015 Oliver Brüning, CERN1 ERL Demonstrator for LHeC: Critical issues -Choice of multi-turn ERL configuration.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
G5 Design Review, April 24, 2009 Gun to 5cell Cavity Test: Overview Dmitry Kayran G5 test Design Review April,
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
FLS2010 Workshop, Stanford, March 1-5, 2010 Florian Loehl (Cornell University) Commissioning of the High Current ERL Injector at Cornell Florian Loehl.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
Intro to WG, part II T. Kamps, C. Hernandez-Garcia FLS 2012 Workshop – FLS 2012 | Intro to WG eSources | Thorsten Kamps.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Experience with Novosibirsk FEL Getmanov Yaroslav Budker INP, Russia Dec. 2012, Berlin, Germany Unwanted Beam Workshop.
O. Kugeler – TTC Meeting February 28 – March – Milano, Italy TTC-meeting Februar 28 – March – Milano, Italy O. Kugeler (based on talk given.
X-band Based FEL proposal
MAX IV linac overview and scope of automation Sara Thorin.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
UBW2012, A. Matveenko Michael Abo-Bakr (presented by Alexander Matveenko) Unwanted Beam Workshop (UBW 2012) Dark Current Issues for Energy.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Seesion1 summary Unwanted Beam Workshop (UBW 2012) Dark Current Issues for Energy Recovery Linacs.
Status of BESSY II and bERLinPro
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Sara Thorin, MAX IV Laboratory
Plans of XFELO in Future ERL Facilities
Options and Recommendations for TL and Dumps
Large Booster and Collider Ring
Alternate Lattice for LCLS-II LTU Y
Joint Accelerator Research JGU & HZB
BriXS – MariX WG 8,9 LASA December 13, 2017.
SRF Gun at ELBE Work package 10, Task 7 Jochen Teichert
Perspectives of SRF gun development for BERLinPro T. Kamps (HZB)
Accelerator Layout and Parameters
An lepton energy-recovery-linac scalable to TeV Vladimir N
The Cornell High Brightness Injector
Compton effect and ThomX What possible future?
Perspectives of SRF gun development for BERLinPro T. Kamps (HZB)
ERL Main-Linac Cryomodule
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Electron Source Configuration
ERL accelerator review. Parameters for a Compton source
Collider Ring Optics & Related Issues
Advanced Research Electron Accelerator Laboratory
Linac/BC1 Commissioning P
Status of RF at HZB: BESSY II, MLS, bERLinPro and BESSY VSR
ERL Director’s Review Main Linac
Electron Optics & Bunch Compression
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Update on ERL Cooler Design Studies
Andrew Hutton Concept suggested independently by Haipeng Wang
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Presentation transcript:

BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 2 Main components: 100MeV, 100mA beam Small emittance, rel. short bunches High current: to address needs of storage ring users Show energy recovery Explore limits of ERL (multiturn, injection energy) Show different operational modes: high current (100mA, 2ps), short pulses (10mA, 100fs), ??, => superiority of the ERL concept to storage rings BERLinPro: ERL demonstration facility to prepare the ground for a few GeV Berlin-Adlershof Goal: SC-RF gun Booster module – Cornell development with minor modifications Merger: C-chicane, 4 rectangular dipoles Linac: based on Tesla technology, modified for high current Return arc: TBA Second loop option

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 3 Finances and time table : ‚go ahead‘ for gun development R&D money for gun development secured Further approval process for entire budget 2010 beam from 1.6 cell gun cavity in HoBiCaT Conceptual design 2011 Technical layout (TDR) 5 years after approval: first recirculated electrons

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 4 GUN DEVELOPMENT SRF Gun Return Arc Merger Section Main Linac SRF Module Spent Beam Beam Dump SRF Booster 1.5 MeV 5-10 MeV 100 MeV Beam Manipulation Undulator tests

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 5 BERLinPro gun: Staged approach A high brightness source which can deliver high average current and short pulses. Stage 1-Beam Dynamics: Produce beam with cold gun in existing HoBiCaT cryomodule. Nb cavity with Pb-coated cathode (J. Sekutowicz & Co), UV laser (MBI), sc solenoid and beam diagnostics. Stage 2-Cathode integration: Extend HoBiCaT bunker, new cryomodule, cathode preparation infrastructure. Produce 1 to 10 mA with CsK 2 Sb cathode, green laser (MBI). In parallel, test gun cavities and new RF coupler (>100kW) in HoBiCaT. Stage 3-High current operation: Build SRF gun for BERLinPro (high rep. rate) From J. Sekutowicz, Proc. of PAC09 Courtesy of Thorsten Kamps

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 6 Stage 1 setup in HoBiCaT 1.6 cell cavity, sc-solenoid, Helium supply Stage 1 diagnostic beam line View screens, stripline, current monitor, emittance measurement, energy measurement

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 7 HoBiCat preparations:

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 8 MERGER DESIGN CONSIDERATIONS SRF Gun Return Arc Merger Section Main Linac SRF Module Spent Beam Beam Dump SRF Booster 1.5 MeV 5-10 MeV 100 MeV Beam Manipulation Undulator tests

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 9 Zigzag chicane: (Brookhaven) Space charge forces: compatible with emittance compensation scheme Higher order dispersion: intrinsically cancelled by C-chicane with rectangular magnets equal focussing in both planes 2. order dispersion not 0 Small trajectory displacement Fixed relation D1/D2 „Geometrically challenging“ (vertical construction in Brookhaven) Easier to incorporate in machine Flexible drift lengths Offset adjustable by drift length Vertical focussing C-chicane:

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 10 ASTRA: Emittance for Zigzag / C- chicane for increasing bunch charge and different energy spread (correlated) C-chicane Zigzag Gaussian bunch:  x,y = 1.0  mrad  x,y = 1.0 mm  z = 1.0 mm  x,y = 20.0 m  x,y = 0

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 11 Bunch lengthening in merger due to energy spread / space charge Effect is reduced when going to 10 MeV injection energy.

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 12 Emittance vrs. bunch length Gaussian bunch: E = 10 MeV  x,y = 1.0  mrad  x,y = 1.0 mm  x,y = 20.0 m  x,y = 0  E = 20keV Emittance depends strongly on bunch length: Charge  zCompression 77pC6ps3 or more 10pC1ps10 or more 77pC 10pC

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 13 Lambertson magnet: Good idea?? Last merger dipole deflects high energy beam by up to 4° => extra chicane necessary Lambertson: High energy beam travels in field free region, injected low energy beam runs parallel Lambertson would reduce 4° to less than 0.14°, which is rather an orbit correction By Lars-Johan Lindgren, MAX-lab

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 14 L1 d  d \ L20.4m0.8m1.2m 10mm mm mm  [°] as a function of d, L rad = 1.432deg. High energy beam deflected by 1/10: 0.14° mean 2.5cm offset after 10m linac  Steering for HE beam is necessary  Place for HE optical elements before Lambertson Steerer Last merger dipole Lambertson?

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 15 Linac: SRF Gun Return Arc Merger Section Main Linac SRF Module Spent Beam Beam Dump SRF Booster 1.5 MeV 5-10 MeV 100 MeV Beam Manipulation Undulator tests

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN MeV Linac: 1.3 GHz Start with multicell TESLA and adapt this for CW and high current Single cryomodule with 6-7 cavities 7 cells/cavity (?) Application „Verbundforschungsantrag“: federal funding for a collaboration with Univ. Rostock and Dortmund for the calculation of HOM Options for HOMs: Ferrite loads, waveguide dampers HoBiCaT test

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 17 RECIRCULATOR - ARC SRF Gun Return Arc Merger Section Main Linac SRF Module Spent Beam Beam Dump SRF Booster 1.5 MeV 5-10 MeV 100 MeV Beam Manipulation Undulator tests

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 18 Path length management: Short bunches require pathlength adjustment Second loop option: 100MeV: 1. turn: L=(n+1/2) rf 200MeV: 1. turn: L= n rf ( rf /2=12cm) Variable injection energy alters path length in merger & splitter for HE beam 20 o 5-20MeV = MeV => 0.5cm t E E = E 0 cos (  t +  0 ) X   =  – 2  0   =  head with higher E  gives compression with “normal” arc R 56 chirp at deceleration doubles  inacceptable energy spread  L = 2    rf =2-3cm    deg. Courtesy of Michael Abo-Bakr

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 19 3 Approaches to pathlength adjustment: 1 - Brookhaven: Build arc on sledge, mechanical adjustment very precise expensive slow 2 - C-chicane 100MeV: 2-3m CSR – bunches are short 3 - Incorporate into the arc 11 00 00 11 KK SBSB X0X0 X1X1 D0D0 D  1, 3 [ °]  2 [° ]  K [°]  x max /c m Angle and offset for 6cm additional pathlength Courtesy of Michael Abo-Bakr

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 20 Radiation safety requirements: Different ‚league‘ than storage rings Drive costs =>drive beamloss requirements Permissable beamloss:<1e-5? => Too little space for shielding above ground => Consider construction underground reduced shielding, vibrations and temperature fluctuations at comparable costs

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 21 BESSY II Cryogenic plant

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 22

March, 1st, 2010, Bettina Kuske, FLS 2010, SLAC, USA BERLinPro: An ERL demonstration facility at the HELMHOLTZ ZENTRUM BERLIN 23 Building: All dimensions preliminary 55m6.4m 6.0m 15m Storage Ring Hall