Free energy and active inference

Slides:



Advertisements
Similar presentations
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
Advertisements

How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Bayesian models for fMRI data
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free Energy Workshop - 28th of October: From the free energy principle to experimental neuroscience, and back The Bayesian brain, surprise and free-energy.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
The free-energy principle: a rough guide to the brain? Karl Friston
Summarized by Eun Seok Lee BioIntelligence Lab 20 Sep, 2012
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
CDB Exploring Science and Society Seminar Thursday 19 November 2009 at 5.30pm Host: Prof Giorgio Gabella The Bayesian brain, surprise and free-energy.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Free energy and active inference Karl Friston Abstract How much about our interaction with – and experience of – our world can be deduced from basic principles?
Abstract We start with a statistical formulation of Helmholtz’s ideas about neural energy to furnish a model of perceptual inference and learning that.
The free-energy principle: a rough guide to the brain? K Friston Summarized by Joon Shik Kim (Thu) Computational Models of Intelligence.
ABSTRACT: My treatment of critical gaps in models of probabilistic inference will focus on the potential of unified theories to “close the gaps” between.
2 2  Background  Vision in Human Brain  Efficient Coding Theory  Motivation  Natural Pictures  Methodology  Statistical Characteristics  Models.
DCM for ERPs/EFPs Clare Palmer & Elina Jacobs Expert: Dimitris Pinotsis.
Abstract This talk summarizes recent attempts to integrate action and perception within a single optimization framework. We start with a statistical formulation.
Dynamic causal modelling of electromagnetic responses Karl Friston - Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL In recent years,
Abstract This talk summarizes our recent attempts to integrate action and perception within a single optimization framework. We start with a statistical.
Abstract This talk will present a general approach (DCM) to the identification of dynamic input-state-output systems such as the network of equivalent.
Recent advances in the theory of brain function
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
Abstract We offer a formal treatment of choice behaviour based on the premise that agents minimise the expected free energy of future outcomes. Crucially,
Abstract Predictive coding models and the free-energy principle, suggests that cortical activity in sensory brain areas reflects the precision of prediction.
Abstract: This overview of the free energy principle offers an account of embodied exchange with the world that associates conscious operations with actively.
Abstract This presentation questions the need for reinforcement learning and related paradigms from machine-learning, when trying to optimise the behavior.
Zangwill Club Seminar - Lent Term The Bayesian brain, surprise and free-energy Karl Friston, Wellcome Centre for Neuroimaging, UCL Abstract Value-learning.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Dynamic Causal Modelling for EEG and MEG
Deans Lecture Reception PM, Lecture 6-7, Lecture theatre S1, Clayton Campus, Monash University). Models, maps and modalities in brain imaging Karl.
Reasons to be careful about reward A flow (policy) cannot be specified with a scalar function of states: the fundamental theorem of vector calculus – aka.
Abstract We will use schizophrenia as a case study of computational psychiatry. We first review the basic phenomenology and pathophysiological theories.
Brain modes and network discovery Karl Friston The past decade has seen tremendous advances in characterising functional integration in the brain. Much.
Free-energy and active inference
Abstract We suggested recently that attention can be understood as inferring the level of uncertainty or precision during hierarchical perception. In.
Abstract This presentation will look at action, perception and cognition as emergent phenomena under a unifying perspective: This Helmholtzian perspective.
Workshop on Mathematical Models of Cognitive Architectures December 5-9, 2011 CIRM, Marseille Workshop on Mathematical Models of Cognitive Architectures.
Dynamic Causal Modelling (DCM) Marta I. Garrido Thanks to: Karl J. Friston, Klaas E. Stephan, Andre C. Marreiros, Stefan J. Kiebel,
Abstract If we assume that neuronal activity encodes a probabilistic representation of the world that optimizes free- energy in a Bayesian fashion, then.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract In this presentation, I will rehearse the free-energy formulation of action and perception, with a special focus on the representation of uncertainty:
Workshop on: The Free Energy Principle (Presented by the Wellcome Trust Centre for Neuroimaging) July 5 (Thursday) - 6 (Friday) 2012 Workshop on: The.
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Abstract: How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts.
How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand.
Abstract How much about our interactions with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to.
Dynamic Causal Models Will Penny Olivier David, Karl Friston, Lee Harrison, Stefan Kiebel, Andrea Mechelli, Klaas Stephan MultiModal Brain Imaging, Copenhagen,
DCM for evoked responses Ryszard Auksztulewicz SPM for M/EEG course, 2015.
Tutorial Session: The Bayesian brain, surprise and free-energy Value-learning and perceptual learning have been an important focus over the past decade,
Bayesian Model Selection and Averaging SPM for MEG/EEG course Peter Zeidman 17 th May 2016, 16:15-17:00.
Dynamic Causal Modeling of Endogenous Fluctuations
Free energy and active inference
Nicolas Alzetta CoNGA: Cognition and Neuroscience Group of Antwerp
Free energy and life as we know it
Free energy, the brain and life as we know it
Computational models for imaging analyses
Wellcome Trust Centre for Neuroimaging University College London
The free-energy principle: a rough guide to the brain? K Friston
Predictive computational modelling in the brain (and other animals)
Dynamic Causal Modelling for M/EEG
CRIS Workshop: Computational Neuroscience and Bayesian Modelling
Dynamic Causal Modelling for evoked responses
Presentation transcript:

Free energy and active inference Karl Friston (UCL) Abstract How much about our interaction with – and experience of – our world can be deduced from basic principles? This talk reviews recent attempts to understand the self-organised behaviour of embodied agents, like ourselves, as satisfying basic imperatives for sustained exchanges with the environment. In brief, one simple driving force appears to explain many aspects of action and perception. This driving force is the minimisation of surprise or prediction error that – in the context of perception – corresponds to Bayes-optimal predictive coding (that suppresses exteroceptive prediction errors) and – in the context of action – reduces to classical motor reflexes (that suppress proprioceptive prediction errors). We will look at some of the phenomena that emerge from this principle; such as hierarchical message passing in the brain and the perceptual inference that ensues. These perceptual abilities rest upon prior beliefs about the world – but where do these beliefs come from? We will consider recent proposals about the nature of prior beliefs and how they underwrite active sampling of the sensorium. Put simply, to minimise surprising states of the world, it is necessary to sample inputs that minimise uncertainty about the causes of sensory input. When this minimisation is implemented via prior beliefs – about how we sample the world – the resulting behaviour is remarkably reminiscent of visual searches and other forms of active inference. In short, if percepts correspond to hypotheses, then action could be construed as sampling data to test perceptual hypotheses – and accrue evidence for our very existence. I hope to illustrate these points using simulations of action observation.

Active inference and predictive coding Active inference and action observation

From the Helmholtz machine to the Bayesian brain and self-organization “Objects are always imagined as being present in the field of vision as would have to be there in order to produce the same impression on the nervous mechanism” - von Helmholtz Hermann von Helmholtz Richard Gregory Geoffrey Hinton From the Helmholtz machine to the Bayesian brain and self-organization Thomas Bayes Richard Feynman Ross Ashby

sensations – predictions How do we minimize prediction errors (free energy)? sensations – predictions Prediction error Change sensations Change predictions Action Perception

Action as inference – the “Bayesian thermostat” Posterior distribution Prior distribution Likelihood distribution 20 40 60 80 100 120 temperature Perception Action

Ascending prediction errors From models to perception A simple hierarchy Generative model Descending predictions Ascending prediction errors Model inversion (inference) Expectations: Predictions: Prediction errors:

Top-down or backward predictions Bottom-up or forward prediction error David Mumford Predictive coding with reflexes Action oculomotor signals reflex arc proprioceptive input pons retinal input Perception Prediction error (superficial pyramidal cells) frontal eye fields geniculate Top-down or backward predictions Conditional predictions (deep pyramidal cells) Bottom-up or forward prediction error visual cortex

Prediction error can be reduced by changing predictions (perception) Prediction error can be reduced by changing sensations (action) Perception entails recurrent message passing in the brain to optimize predictions Action fulfils descending predictions

Action as inference – the “Bayesian thermostat” Prior distribution 20 40 60 80 100 120 temperature Perception: Action:

Action with point attractors visual input Exteroceptive predictions Descending proprioceptive predictions proprioceptive input

action observation Heteroclinic cycle (central pattern generator) Descending proprioceptive predictions action observation 0.4 0.6 0.8 position (y) 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4 position (x) position (x)

Hermann von Helmholtz “Each movement we make by which we alter the appearance of objects should be thought of as an experiment designed to test whether we have understood correctly the invariant relations of the phenomena before us, that is, their existence in definite spatial relations.” 'The Facts of Perception' (1878) in The Selected Writings of Hermann von Helmholtz, Ed. R. Karl, Middletown: Wesleyan University Press, 1971 p. 384

Thank you And thanks to collaborators: And colleagues: Rick Adams Andre Bastos Sven Bestmann Harriet Brown Jean Daunizeau Mark Edwards Xiaosi Gu Lee Harrison Stefan Kiebel James Kilner Jérémie Mattout Rosalyn Moran Will Penny Lisa Quattrocki Knight Klaas Stephan And colleagues: Andy Clark Peter Dayan Jörn Diedrichsen Paul Fletcher Pascal Fries Geoffrey Hinton James Hopkins Jakob Hohwy Henry Kennedy Paul Verschure Florentin Wörgötter And many others

Searching to test hypotheses – life as an efficient experiment Free energy principle minimise uncertainty

Free-energy minimisation leading to… Time-scale Free-energy minimisation leading to… Perception and Action: The optimisation of neuronal and neuromuscular activity to suppress prediction errors (or free-energy) based on generative models of sensory data. Learning and attention: The optimisation of synaptic gain and efficacy over seconds to hours, to encode the precisions of prediction errors and causal structure in the sensorium. This entails suppression of free-energy over time. Neurodevelopment: Model optimisation through activity-dependent pruning and maintenance of neuronal connections that are specified epigenetically Evolution: Optimisation of the average free-energy (free-fitness) over time and individuals of a given class (e.g., conspecifics) by selective pressure on the epigenetic specification of their generative models.