Quantum Optics with Surface Plasmons 5. 18 at CYCU 國家理論科學中心(南區) 成大物理系 陳光胤.

Slides:



Advertisements
Similar presentations
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Advertisements

Superconducting qubits
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Electron wavefunction in strong and ultra-strong laser field One- and two-dimensional ab initio simulations and models Jacek Matulewski Division of Collision.
Shanhui Fan, Shanshan Xu, Eden Rephaeli
Nanophotonic Devices for Quantum Optics Feb 13, 2013 GCOE symposium Takao Aoki Waseda University.
NIRT: Photon and Plasmon Engineering in Active Optical Devices Based on Synthesized Nanostructures Marko Lončar 1, Mikhail Lukin 2 and Hongkun Park 3 1.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Collective Response of Atom Clusters and Nuclei: Role of Chaos Trento April 2010 Mahir S. Hussein University of Sao Paulo.
I.V. Iorsh, I.V. Shadrivov, P.A. Belov, and Yu.S. Kivshar Benasque, , 2013.
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
冷原子實驗之基本原理 (I) 韓殿君 國立中正大學物理系 2003 年 8 月 5 日 於理論中心.
Anderson localization in BECs
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Optical study of Spintronics in III-V semiconductors
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Guillermina Ramirez San Juan
Jacob B Khurgin Johns Hopkins University, Baltimore Greg Sun
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
Coupling of InGaN quantum-well photoluminescence to silver surface plasmons PRB, Vol 60, No 16, Pg Gontijo, M. Boroditsky, and E. Yablonovitch,UCLA.
Single atom lasing of a dressed flux qubit
ITOH Lab. Hiroaki SAWADA
Decoherence issues for atoms in cavities & near surfaces Peter Knight, Imperial College London work with P K Rekdal,Stefan Scheel, Almut Beige, Jiannis.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Nanophotonics Class 4 Density of states. Outline Spontaneous emission: an exited atom/molecule/.. decays to the ground state and emits a photon Emission.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Engineering Spontaneous Emission in Hybrid Nanoscale Materials for Optoelectronics and Bio-photonics Arup Neogi Department of Physics and Materials Engineering.
Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
J.R.Krenn – Nanotechnology – CERN 2003 – Part 3 page 1 NANOTECHNOLOGY Part 3. Optics Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1.
Spontaneous Emission in 2D Arbitrary Inhomogeneous Environment Peng-Fei Qiao, Wei E. I. Sha, Yongpin P. Chen, Wallace C. H. Choy, and Weng Cho Chew * Department.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Photonic Topological Insulators
Microscopic model of photon condensation Milan Radonjić, Antun Balaž and Axel Pelster TU Berlin,
NIRT: Photon and Plasmon Engineering in Active Optical Devices based on Synthesized Nanostructures Marko Lončar 1, Mikhail Lukin 2 and Hongkun Park 3 1.
Quantum simulation for frustrated many body interaction models Lanzhou Aug. 2, 2011 Zheng-Wei Zhou( 周正威) Key Lab of Quantum Information, CAS, USTC In collaboration.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Plasmonic vector near-field for composite interference, SPP switch and optical simulator Tao Li(李涛) National Laboratory of Solid State.
Quantum information processing with electron spins Florian Meier and David D. Awschalom Funding from: Optics & Spin Physics.
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
Exactly Solvable gl(m/n) Bose-Fermi Systems Feng Pan, Lianrong Dai, and J. P. Draayer Liaoning Normal Univ. Dalian China Recent Advances in Quantum.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Quantum simulation for frustrated many body interaction models
量子力學導論 Chap 1 - The Wave Function Chap 2 - The Time-independent Schrödinger Equation Chap 3 - Formalism in Hilbert Space Chap 4 - 表象理論.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
International Scientific Spring 2016
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Superconducting artificial atoms coupled to 1D open space
Quantum optics Eyal Freiberg.
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum Phase Transition of Light: A Renormalization Group Study
Plasmonic waveguide filters with nanodisk resonators
Open quantum systems.
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
or Quantum Nonlinear Optics without Photons
Chengfu Mu, Peking University
Norm Moulton LPS 15 October, 1999
Dynamics and decoherence of a qubit coupled to a two-level system
Presentation transcript:

Quantum Optics with Surface Plasmons at CYCU 國家理論科學中心(南區) 成大物理系 陳光胤

Outline Introduction SE of excitons into surface plasmons Coherent single surface plasmon transport Experiment proposal Summary Outlooks

I.Introduction

What is surface plasmon? Classical : Quantum : Surface plasmon modes on the surface of metals Nature 424, 824 (2003)

Lycurgus Cup and Stained Glass normal (reflected light)held up to the light Trustees of The British Museum SP excitation Gothic Window in Notre-Dame de Paris Himmelsfahrskirche, Dresden

Spontaneous Emission (SE) of Quantum Dot (QD) Pulse laser inject QD he Vacuum life time of QD~ ns

II. SE of excitons into nanowire surface plasmons

nanowires sp dots Recent experiment

Model z metal nanowire e h strong interaction Why strong? h

SP fields C. A. Pfeiffer et al., Phys. Rev. B 10, 3038 (1974) Tanscendental Equation

APL, 87, (2005) Indep. of φ wire, n=0 Dispersion relations of SP thin film

Dispersion relations of SP Key feature: nonlinear dispersion with local minimum

approach : Fermi’s golden rules (with dipole approx.) SE rate calculations e h electric dipole moment + -

SE rates into SP R=0.1R=0.5 strongly enhanced SE rates OBTAINED! G.Y Chen, Y. N Chen and D. S. Chuu, Opt. Lett. 33, 2212 (2008).

Band-edge effect 0 ∞ perturbation treatment is inappropriate ! Markovian : weak interactions Non-Markovian : strong interactions

Non-Markovian treatment Schrödinger’s Equation Laplace Transf.

Decay dynamics Y. N. Chen, G. Y. Chen*, D. S. Chuu, and T. Brandes, Phys. Rev. A 79, (2009).

III. Coherent single surface plasmon transport

D. E. Chang, A. S. Sǿrensen, E. A. Demler, and M. D. Lukin, Nature Physics 3, 807 (2007). Single QD coupling strength between QDs and SP

Scattering of nanowire SP Real space H : t r

Scattering of nanowire SP P=20 J. T. Shen, and S. Fan, Opt. Lett. 30, (2005); D. E. Chang, A. S. Sǿrensen, E. A. Demler, and M. D. Lukin, Nature Physics 3, 807 (2007).

Our model d Transmitted Reflected Incident Reflected |e1 〉|e1 〉|e2 〉|e2 〉

Method The model Hamiltonian : The stationary state : The probability amplitude of each QD in excited state t r

Results

I. II. maximal entanglement entangled state !

concurrence A property to quantify entanglement For two qubits state ρ: spin-flip state C=1 maximal entanglement W. Wootters, PRL 80, 2245 (1998)

G. Y. Chen, Y. N. Chen, F. Mintert, N. Lambert, D. S. Chuu, and A. Buchleitner, in preparation.

Experimental realizations B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble, Science 319, 1062 (2008). D. E. Chang, A. S. Sǿrensen, E. A. Demler, and M. D. Lukin, Nature Physics 3, 807 (2007).

Experiment proposal d dielectric waveguide |g 1 > |g 2 > |e 1 > |e 2 > minimize the dissipations

Summary The SE rate of QD exciton can be strongly enhanced by coupling to SP. The decay dynamics around the band edge should be treated with non- Markovian way. Through the scattering of SP, the maximal entanglement between two QDs can be achieved.

Outlook I: surface-plasmonic switch z CdSe QD GaN Ag nm e h An external constant magnetic field B z BzBz The dispersion relations would be variated. Surface-Plasmonic Switch

Outlook II: Quantum Phase Transition of Surface Plasmons Simulation of QPT from a Superfluid to Mott insulator by using utralcold atoms : hoppingOn-site interaction U > t : Insulator t > U : Superfluid L. Buluta and F. Nori, Science 326, 108 (2009).

|g 1 > |g 2 > |g 3 > JJ |e 1 > |e 2 > |e 3 > Simulation by using surface plasmons :

Detection of Mott Transition |g 1 > |g 2 > |g 3 > J J waveguide |e 1 > |e 2 > |e 3 > insulator or superfluid ?

Collaborators : Prof. Dr. Andreas Buchleitner (Uni. Freiburg, Germany) Dr. Florian Mintert (Uni. Freiburg, Germany) Prof. Franco Nori (The Uni. of Michigan, Ann Arbor, USA and RIKEN, Japan ) Dr. Neil Lambert (RIKEN, Japan) Prof. Dr. Tobias Brandes (TU Berlin, Germany) Prof. 陳岳男 成大物理系& NCTS ( south ) Prof. 褚德三 交大電子物理系 退休教授