Quantum Optics II – Cozumel, Dec. 6-9, 2004

Slides:



Advertisements
Similar presentations
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Advertisements

Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Two-Photon Fields: Coherence, Interference and Entanglement Anand Kumar Jha Indian Institute of Technology, Kanpur QIPA 2103, HRI, Allahabad.
QCD Evolution Workshop, Jefferson Lab, May 9, 2013 The Angular Momentum of Gauge Fields: The Case of Twisted Photons Andrei Afanasev The George Washington.
Nonlinear microwave optics in superconducting quantum circuits Zachary Dutton Raytheon BBN Technologies BBN collaborators Thomas Ohki John Schlafer Bhaskar.
Low-Light-Level Cross Phase Modulation with Cold Atoms J.H. Shieh, W.-J. Wang and Ying-Cheng Chen Institute of Atomic and Molecular Sciences, Academia.
Laser System for Atom Interferometry Andrew Chew.
M. Auzinsh, R. Ferber, I. Fescenko, L. Kalvans, M. Tamanis
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Title : Investigation on Nonlinear Optical Effects of Weak Light in Coherent Atomic Media  Author : Hui-jun Li  Supervisor: Prof Guoxiang Huang  Subject:
Generation of short pulses
Cavity decay rate in presence of a Slow-Light medium
Single Shot Combined Time Frequency Four Wave Mixing Andrey Shalit, Yuri Paskover and Yehiam Prior Department of Chemical Physics Weizmann Institute of.
Spectroscopy of the instantaneous all-optical switching nonlinearity of thin films  F.P. Strohkendl, R.J. Larsen, L.R. Dalton, University of Southern.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Maria Simanovskaia Raman-excited spin coherences in NV centers in diamond.
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Analysis of quantum entanglement of spontaneous single photons
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Fiber-Optic Communications James N. Downing. Chapter 2 Principles of Optics.
1 Optically polarized atoms Marcis Auzinsh, University of Latvia Dmitry Budker, UC Berkeley and LBNL Simon M. Rochester, UC Berkeley.
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
1 Coherent processes in metastable helium at room temperature Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker Laboratoire Aimé Cotton, Orsay, France.
Excited state spatial distributions Graham Lochead 20/06/11.
George R. Welch Marlan O. Scully Irina Novikova Andrey Matsko M. Suhail Zubairy Eugeniy Mikhailov M. Suhail Zubairy Irina Novikova Andrey Matsko Ellipticity-Dependent.
First year talk Mark Zentile
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Shashi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P., G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Controlling matter with light.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Phys 102 – Lecture 26 The quantum numbers and spin.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Topological phase and quantum criptography with spin-orbit entanglement of the photon Universidade Federal Fluminense Instituto de Física - Niterói – RJ.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Today Ch.36 (Diffraction) Next week, Dec.6, Review This week off. hours: Th: 2:00-3:15pm; F: 1:00-3:00pm Next week off. hours: Tu:2-3:15pm,W:1-3pm,Th:1-3pm.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Electromagnetic waves: Reflection, Refraction and Interference
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Neutrino mass spectroscopy with atoms-- experimental status-- N. Sasao and M. Yoshimura (Okayama U.) for SPAN collaboration 2015/8/2117th Lomonosov1.
Pablo Barberis Blostein y Marc Bienert
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Introduction to materials physics #4
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Atomic Physics Quantum Physics 2002 Recommended Reading: Harris Chapter 7.
When circularly-polarized light with near- bandgap energy illuminates a negative electron affinity (NEA) GaAs photocathode, spin-polarized electrons are.
1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Optical Vortices and Electric Quadrupole transitions James Bounds.
Electromagnetically Induced Transparency with Broadband Laser Pulses D. D. Yavuz Department of Physics, University of Wisconsin, Madison, WI, Introduction.
Superfluorescence in an Ultracold Thermal Vapor
Lasers and effects of magnetic field
Why Do CPO Lead to Slow Light When the Laser
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Presentation transcript:

Quantum Optics II – Cozumel, Dec. 6-9, 2004 J. W. Tabosa Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil tabosa@df.ufpe.br Coherent Spectroscopy of Cold Cesium Atoms Using Light Carrying Orbital Angular Momentum Quantum Optics II – Cozumel, Dec. 6-9, 2004 Financial support: FINEP, CNPq: Pronex, Instituto do Milenio Collaborators: Prof. A. Lezama (Inst. of Phys. Montevideo, Uruguay) Students: George C. Cardoso (PhD, Post-doc/USA) Sergio Barreiro (PhD) PASI_2003

OUTLINE: First Part: Second Part: Summary and Conclusions Introduction: The Orbital Angular Momentum (OAM) of Light (Entanglement of OAM states in Parametric Down Conversion) Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Grating (EIG) Coherent Four-Wave Mixing Using Light with OAM: Generation of Superposition of OAM states Second Part: Population Grating Transfer in Cold Atoms: Applications for Cold Atoms Velocimetry Coherence Grating Transfer in Cold Atoms. Summary and Conclusions PASI_2003

Phase Dislocation in an Optical Field Dislocations are located in positions where: Screw dislocation (Vortex): Intensity Phase PASI_2003

Laguerre-Gaussian Mode: Orbital and Spin Angular Momentum of Light with Screw Phase Dislocation Topological charge Laguerre-Gaussian Mode: Phase front: (L. Allen et al. PRA, (1992)) Total Angular Momentum: Spin Orbital Total Energy: For Laguerre-Gauss Mode: OAM per Photon: PASI_2003

Generation of Vortex Beams Mode Converter: Computer-generated holograms: m=1 m=2

Interferograms for a single charged beam Measuring the topological charge: Reference wave CCD Vortex beam Mask Collinear Noncollinear Interferograms for a single charged beam PASI_2003

Arbitrary mode selector: Mach-Zehnder Interferometer: mode selector m m=even m=odd Arbitrary mode selector:

Nature (2002), Zeilinger et at. Spontaneous Parametric dow-conversion: w w/2 OAM Conservation: Emitted photon state: PASI_2003

OUTLINE: First Part: Second Part: Summary and Conclusions Introduction: The Orbital Angular Momentum (OAM) of Light (Entanglement of OAM states in Parametric Down Conversion) Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Grating (EIG) Coherent Four-Wave Mixing Using Light with OAM: Generation of Superposition of OAM states Second Part: Population Grating Transfer in Cold Atoms: Applications for Cold Atoms Velocimetry Coherence Grating Transfer in Cold Atoms. Summary and Conclusions PASI_2003

Transparency window Dn: ground states dephasing rate g Coherent Effects in Three-Level Systems: Electromagnetically Induced Transparency (EIT) Boller, Imamoglu, Harris, PRL (1991) Coupling field WC Probe field WP a d D Transparency window Dn: ground states dephasing rate g d=0 (Raman resonance) Dw Group Velocity: - Light storage: C. Liu et al, Nature (2001); M.D. Lukin, Rev. Mod. Phys. (2003) PASI_2003

Spatially Modulated EIT Spatially Modulated Coherence: FWM Electromagnetically Induced Grating (EIG) Ling, Li, and Xial, PRA (1998) Spatially Modulated EIT D d Spatially Modulated Coherence: FWM EIT grating -2 -1 1 2 Absorption Spectrum d/G EIT -2 -1 1 2 EIG signal d/G EIG PASI_2003

Coherent spectroscopy in Recife

The Magneto-Optical Trap (MOT) E. Raab, et al (1987) Cold Atoms: I s+ s- Repumping The Magneto-Optical Trap (MOT) E. Raab, et al (1987) Essa é uma representaáo simplificada da armadilha. O vapor de cesio está ampola de quartzo, com ultra alto vacuo, cerca de 10^-9 torr. O resfriamento é porporcionado por tres pares de feixes contrapropagantes, com polarizacoes circulares e opostas, e quase ressonantes com uma transição ciclica do sistema atomico. Para criar um minimo de potencial, que aprisione s a´tmos, utiliza-se um campo magnetico gradiente, que é zero no centro da armadilha e crece em todas as direcoes. Se o atomo tenta escapar, o efeito Zeeman colocao-o em ressonancia com um dos feixes de armadilhaemto que traz de volta o atomo pro centro da armadilha. Essas bobinas bobinas com correntes eletricas em direcoes opostas geram esse campo magnético O que se tem n apratica é um aglomerado de átomos em torno do centro da armadilha, formando uma bola de atomos frios, em nosso caso com cerca de 10 milhoes de atomos num raio de cerca de 1 milimetro. O vacuo evita colisoes com atomos não aprisionados, o que destroi a armadilha. PASI_2003

Transition: 6S1/2 , Fg=4-6P3/2 , Fe=4 Electromagnetically Induced gratings in degenerate two-level system G.C.Cardoso and JWT, PRA (2002) DTLS of Cesium: Transition: 6S1/2 , Fg=4-6P3/2 , Fe=4 F P B S Beams polarization: Scanning frequency: wP wF PASI_2003

OUTLINE: First Part: Second Part: Summary and Conclusions Introduction: The Orbital Angular Momentum (OAM) of Light (Entanglement of OAM states in Parametric Down Conversion) Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Grating (EIG) Coherent Four-Wave Mixing Using Light with OAM: Generation of Superposition of OAM states Second Part: Population Grating Transfer in Cold Atoms: Applications for Cold Atoms Velocimetry Coherence Grating Transfer in Cold Atoms. Summary and Conclusions PASI_2003

FWM in a closed degenerate two-level system Fe=5 Fg=4 d w w-d w+d DTLS of Cesium: Fg=4 – Fe=5 F B P S Two-level systems F P B S Zeeman coherence grating F B P S PASI_2003

Theoretical Model DTLS Fe=2 Fg=1 Master equation: PASI_2003

Measured and Calculated FWM Spectra Lezama, Cardoso, JWT, PRA (2001) Parallel polarization Orthogonal polarization Zeeman coherence grating Narrow dip: quantum interference of Zeeman pairs with different values of mi PASI_2003

Generation of ligth with OAM via coherence induced grating S. Brarreiro and JWT, PRL (2003) Experimental Scheme F P S B (F||B) P 200 KHz PASI_2003

Coherently Generated Beam with OAM Topological charge: m=1 out in Generated reference wave PASI_2003

Topological charge: m=2 in out Energy and linear momentum conservation: OAM conservation: PASI_2003

Generation of coherent Superposition of OAM States

Incident and generated superposition of OAM OUT m=1+m=2 m=0+m=1+m=2

OUTLINE: First Part: Second Part: Summary and Conclusions Introduction: The Orbital Angular Momentum (OAM) of Light (Entanglement of OAM states in Parametric Down Conversion) Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Grating (EIG) Coherent Four-Wave Mixing Using Light with OAM: Generation of Superposition of OAM states Second Part: Population Grating Transfer in Cold Atoms: Applications for Cold Atoms Velocimetry Coherence Grating Transfer in Cold Atoms. Summary and Conclusions PASI_2003

Population Grating Transfer in Cold Cesium Atoms Bragg diffraction into a transferred population grating w 1 F'=5 F'=4 F'=3 (d) (c) (b) (a) (F//B) ^__ P B ^_ (F//P) F//P//B Observed spectra Cesium D2 Line gT F,w1 P,w1 gR B, w2 D Grating and repumping: Off L=27mm Gaussian fitting Cold atoms velocimetry: Diffraction Decay: PASI_2003

theoretical model (V-L scheme) Coherence transfer: theoretical model (V-L scheme) SE Master Equation: (Barrat and C. Cohen-Tannoudji) Diffracted spectrum:

Observation of grating coherence transfer: S Observation of grating coherence transfer: S. Barreiro and JWT, to appear in PRA (2005) Cesium level scheme: Experimental setup: - MOT beams and magnetic field are switched off.

Experimental observation of Zeeman grating transfer Cesium level scheme: Observed Bragg diffraction spectra:

Summary and Conclusions Generation of superposition states of OAM via coherence grating: possibility to store a multidimensional quantum state of light in a long-lived atomic coherence. Theoretical and experimental demonstration of coherence grating transfer between different pairs of Zeeman sublevels. Current research: Storage of light carrying OAM in an atomic coherence. Squeezing via four-wave mixing in an EIT medium. PASI_2003