“New results on finite H-systems” Budapest, 29/30 November 2002 Jointly with Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri Dipartimento di Informatica.

Slides:



Advertisements
Similar presentations
DNA and splicing (circular) Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. di Milano - Bicocca ITALY Dipartimento di Informatica e Applicazioni,
Advertisements

Molecular Computing Formal Languages Theory of Codes Combinatorics on Words.
Formal Languages Theory of Codes Combinatorics on words Molecular Computing.
Towards a characterization of regular languages generated by finite splicing systems: where are we? Ravello, Settembre 2003 Paola Bonizzoni, Giancarlo.
Two-dimensional Rational Automata: a bridge unifying 1d and 2d language theory Marcella Anselmo Dora Giammarresi Maria Madonia Univ. of Salerno Univ. Roma.
Formal Languages: main findings so far A problem can be formalised as a formal language A formal language can be defined in various ways, e.g.: the language.
Language and Automata Theory
4b Lexical analysis Finite Automata
1 1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 3 School of Innovation, Design and Engineering Mälardalen University 2012.
CS21 Decidability and Tractability
Introduction to Computability Theory
1 Introduction to Computability Theory Lecture7: PushDown Automata (Part 1) Prof. Amos Israeli.
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
CS 490: Automata and Language Theory Daniel Firpo Spring 2003.
79 Regular Expression Regular expressions over an alphabet  are defined recursively as follows. (1) Ø, which denotes the empty set, is a regular expression.
CS5371 Theory of Computation Lecture 4: Automata Theory II (DFA = NFA, Regular Language)
CSC 361Finite Automata1. CSC 361Finite Automata2 Formal Specification of Languages Generators Grammars Context-free Regular Regular Expressions Recognizers.
Nathan Brunelle Department of Computer Science University of Virginia Theory of Computation CS3102 – Spring 2014 A tale.
DNA SPLICING RULES STAYING TRUE TO THE BIOLOGY Elizabeth Goode April 2015.
“Developments on linear and circular splicing” Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica.
THEORY OF COMPUTATION 08 KLEENE’S THEOREM.
CS/IT 138 THEORY OF COMPUTATION Chapter 1 Introduction to the Theory of Computation.
Theory of Languages and Automata
Introduction to CS Theory Lecture 3 – Regular Languages Piotr Faliszewski
CS 3813: Introduction to Formal Languages and Automata
4b 4b Lexical analysis Finite Automata. Finite Automata (FA) FA also called Finite State Machine (FSM) –Abstract model of a computing entity. –Decides.
Computing languages by (bounded) local sets Dora Giammarresi Università di Roma “Tor Vergata” Italy.
CSCI 2670 Introduction to Theory of Computing August 25, 2005.
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 3 Mälardalen University 2010.
1 Dal non-determinismo al determinismo ( nei linguaggi 2dim ): alcune riflessioni Marcella Anselmo, Dora Giammarresi, Maria Madonia, Antonio Restivo Riunione.
PushDown Automata. What is a stack? A stack is a Last In First Out data structure where I only have access to the last element inserted in the stack.
CS 203: Introduction to Formal Languages and Automata
ON THE EXPRESSIVE POWER OF SHUFFLE PRODUCT Antonio Restivo Università di Palermo.
An Introduction to Rabin Automata Presented By: Tamar Aizikowitz Spring 2007 Automata Seminar.
Grammars A grammar is a 4-tuple G = (V, T, P, S) where 1)V is a set of nonterminal symbols (also called variables or syntactic categories) 2)T is a finite.
UNIT - I Formal Language and Regular Expressions: Languages Definition regular expressions Regular sets identity rules. Finite Automata: DFA NFA NFA with.
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 3 Mälardalen University 2007.
Molecular Computation and Splicing Systems J.H.M. Dassen, Summarized by Dongmin Kim
Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1.
Algorithms for hard problems Automata and tree automata Juris Viksna, 2015.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen Department of Computer Science University of Texas-Pan American.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen.
Complexity and Computability Theory I Lecture #5 Rina Zviel-Girshin Leah Epstein Winter
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 3 Mälardalen University 2006.
1/29/02CSE460 - MSU1 Nondeterminism-NFA Section 4.1 of Martin Textbook CSE460 – Computability & Formal Language Theory Comp. Science & Engineering Michigan.
Computability Joke. Context-free grammars Parsing. Chomsky
Implementation of Haskell Modules for Automata and Sticker Systems
Formal Methods in software development
Theory of Languages and Automata
FORMAL LANGUAGES AND AUTOMATA THEORY
Context Sensitive Grammar & Turing Machines
CSCE 355 Foundations of Computation
Formal Language & Automata Theory
Language and Automata Theory
Course 2 Introduction to Formal Languages and Automata Theory (part 2)
Equivalence, DFA, NDFA Sequential Machine Theory Prof. K. J. Hintz
REGULAR LANGUAGES AND REGULAR GRAMMARS
Hierarchy of languages
CSE322 The Chomsky Hierarchy
5. Context-Free Grammars and Languages
Non-Deterministic Finite Automata
Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY
4b Lexical analysis Finite Automata
Finite-State Methods in Natural-Language Processing: Basic Mathematics
Formal Methods in software development
4b Lexical analysis Finite Automata
Chapter 1 Regular Language
CSC 4170 Theory of Computation Finite Automata Section 1.1.
Sub: Theoretical Foundations of Computer Sciences
The Chomsky Hierarchy Costas Busch - LSU.
Presentation transcript:

“New results on finite H-systems” Budapest, 29/30 November 2002 Jointly with Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. of Milano - Bicocca, ITALY Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY Partially supported by: - MIUR Project “Formal Languages and Automata: Theory and Applications” - 60% Project “Linguaggi Formali e Modelli di Calcolo” - the contribution of EU Commission under The 5th Framework Programme, Project MolCoNet (IST ) Rosalba Zizza

LINEAR SPLICING restriction enzyme ligase enzyme DNA Strand 2 DNA Strand 1 ligase enzyme

 : (x u 1 u 2 y, wu 3 u 4 z) r = u 1 | u 2 $ u 3 | u 4 rule (x u 1 u 4 z, wu 3 u 2 y) Paun’s linear splicing operation (1996) xy wz x w z cut paste y sites Pattern recognition u1u1 u2u2 u3u3 u4u4 u1u1 u2u2 u3u3 u4u4 x u1u1 z u4u4 w u3u3 u2u2 z

(aa)*b =L(S PA ), I={b, aab}, R={1| b$ 1| aab} Example  ( aab, aab ) = (aaaab, b) L(S PA ) = I   (I)   2 (I) ... =  n  0  n (I) splicing language H(F 1, F 2 ) = {L=L(S PA ) | S PA = (A,I,R), I  F 1, R  F 2, F 1, F 2 families in the Chomsky hierarchy} Paun’s linear splicing system (1996)S PA = (A, I, R) A=finite alphabet; I  A* initial language; R  A*|A*$A*|A* set of rules; [Head, Paun, Pixton, Handbook of Formal Languages, 1996] { L | L=L(S PA ), I, R finite sets }  Regular (aa)*  L( S PA ) { L | L=L(S PA ), I regular, R finite } = Regular (proper subclass) H(F 1, F 2 )

Finite linear splicing system: S PA = ( A, I, R) with A, I, R finite sets In the following… Problem 1 Characterize regular languages generated by finite linear Paun splicing systems Problem 2 Given L regular, can we decide whether L  H(FIN,FIN) ?

Computational power of splicing languages and regular languages: a short survey…  Head 1987 (Bull. Math. Biol.): SLT=languages generated by Null Context splicing systems (triples (1,x,1))  Gatterdam 1992 (SIAM J. of Comp.): specific finite Head’s splicing systems  Culik, Harju 1992 (Discr. App. Math.): (Head’s) splicing and domino languages  Kim 1997 (SIAM J. of Comp.): from the finite state automaton recognizing I to the f.s.a. recognizing L(S H )  Kim 1997 (Cocoon97): given L  REG, a finite set of triples X, we can decide whether  I  L s.t. L= L(S H ) Pixton 1996 (Theor. Comp. Sci.): if F is a full AFL, then H(FA,FIN)  FA Mateescu, Paun, Rozenberg, Salomaa 1998 (Discr. Appl. Math.): simple splicing systems (all rules a|1 $ a|1, a  A); we can decide whether L  REG, L= L(S PA ), S PA simple splicing system. Head 1998 (Computing with Bio-Molecules): given L  REG, we can decide whether L= L(S PA ) with “special” one sided-contexts  r  R: r=u|1 $ v|1 (resp. r=1|u $ 1|v), u|1 $ u|1  R (resp. 1|u $ 1|u  R) Head 1998 (Discr. Appl. Math.): SLT=hierarchy of simple splicing systems Bonizzoni, Ferretti, Mauri, Zizza 2001 (IPL): Strict inclusion among finite splicing systems Head 2002 Splicing systems: regular languages and below (DNA8)

Main Difficulty c z u v v’ c u’ u v v’ Rules for generating... z u cv TOOLS: Automata Theory Syntactic Congruence (w.r.t. L) [x] x  L x’  Context of x and x’ [  w,z  A* wxz  L  wx’z  L]  C(x,L) = C(x’,L) syntactic monoid M (L)= A*/  L L regular  M (L) finite Minimal Automaton Constant [Schützenberger, 1975] w  A* is a CONSTANT for a language L if C(w,L)=C l (w,L)  C r (w,L) Left context Right context

L(w[x])={y’ 1 wx’ y’ 2  L|  (q 0,y’ 1 w x’ y’ 2 )=q F, x’  [x]} finite splicing language w [x] Partial results L=L( A ), A = (A, Q, , q 0,F) minimal only here [Bonizzoni, De Felice, Mauri, Zizza (2002)] q0q0 qFqF > > > > > > deterministic Marker Language Marker w[x] Note that we can -ERASE Locally reversible Hypotheses, -- q F  F

u 1 | u 2 $ u 3 | u 4  R  u 1 | u 2 $ u 1 | u 2, u 3 | u 4 $ u 3 | u 4  R Reflexive splicing system S PA = (A, I, R) finite + (reflexive hypothesis on R) [Handbook 1996] Remark Finite Head splicing system Finite Paun splicing system, reflexive and symmetric [Handbook 1996]

Reflexive splicing system L is a reflexive splicing language  L=L(S PA ), S PA reflexive splicing system L is a regular language generated by a reflexive S PA =(A, I, R), where  r  R: r=u|1 $ v|1 (resp. r=1|u $ 1|v)   finite set of constants F for L s.t. the set L\  {A*cA* : c  F} is finite We can decide the above property, but only when ALL rules are either r=u|1 $ v|1 or r=1|u $ 1|v [Handbook 1996] [Head, Splicing languages generated by one-sided context (1998)] Theorem

Marker languages Lemma L is a regular reflexive splicing language   finite splicing system S PA =(A, I, R) s.t. L=L( S PA ) and each site is a constant for L Theorem L is a regular reflexive splicing language  L is a split-language. [Bonizzoni, De Felice, Mauri, Zizza, submitted (2002)] Our result Extend Head’s result Alternative, constructive, effective proof for constant languages Reflexive splicing languages Decidability property Contain some constant languages, but also reflexive splicing languages Not all one-sided contexts

Split-languages T finite subset of N, {m t | m t is a constant for a regular language L, t  T} L is a split language  L = X   t  T L( m t )   (j,j’) L (j,j’) Finite set, s.t. no word in X has m t as a factor Union of constant languages m (j,1) m (j,2) m (j’,1) m (j’,2) L’ 1 m t’ L’ 2 = L’ 1 m (j’,1) m (j’,2) L’ 2 L 1 m t L 2 = L 1 m (j,1) m (j,2) L 2 L 1 m (j,1) m (j’,2) L’ 2  L’ 1 m (j’,1) m (j,2) L 2 Constant language L(m t ) = {x m t y  L| x,y  A*} mtmt m t’