Doc.: IEEE 802.11-12/0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:

Slides:



Advertisements
Similar presentations
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Staccato UWB PHY Proposal for TG4a] Date Submitted:
Advertisements

Doc.: IEEE /0071r1 Submission January 2004 Aleksandar Purkovic, Nortel NetworksSlide 1 LDPC vs. Convolutional Codes for n Applications:
Doc.: IEEE /1196r1 Submission Data Rate and Spectrum Requirements for IEEE aj (45 GHz) Date: Authors: Haiming Wang (SEU)Slide.
Doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC)
Comparison of different MIMO-OFDM signal detectors for LTE
1 Peak-to-Average Power Ratio (PAPR) One of the main problems in OFDM system is large PAPR /PAR(increased complexity of the ADC and DAC, and reduced efficiency.
Submission doc.: IEEE / 0431 r0 March 2015 Dmitry Cherniavsky, SiBEAM, Inc.Slide 1 Shared MIMO Architecture for ay. Date: Authors:
Doc.: IEEE /0705r2 Submission Control PHY Design for 40-50GHz Millimeter Wave Communication Systems Authors: May 2015 Slide 1Jianhan Liu (MediaTek)
Doc.: IEEE /xxxx Submission Control PHY Design for 40-50GHz Millimeter Wave Communication Systems.pptx Authors: May 2015 Slide 1Jianhan Liu, et.
Doc.: IEEE /1305r1 Submission January 2011 Monnerie (Landis+Gyr), Buffington (Itron), Shimada (Yokogawa Co.), Waheed (Freescale) Slide 1 IEEE.
Doc.: IEEE /0489r1 Submission May 2010 Alexander Maltsev, IntelSlide 1 PHY Performance Evaluation with 60 GHz WLAN Channel Models Date:
Doc.: IEEE /0705r1 Submission Control PHY Design for 40-50GHz Millimeter Wave Communication Systems Authors: May 2015 Slide 1Jianhan Liu, et.
Doc.: IEEE /0abcr0 Submission Sept 2004 Mustafa Eroz, Hughes Network SystemsSlide 1 HNS Proposal for n Physical Layer Mustafa Eroz, Feng-Wen.
Preliminary Coexistence Tests The same wireless signal was used as the victim: – Power Level = 0 dBm – BW = 20 MHz – Center Frequency = GHz.
Submission doc.: /0929r00 Jim Lansford(CSR), et al Slide 1 Expansion of ac to 6-10GHz Date: Authors: July 2012.
Doc.: IEEE /0935r0 Submission July 2012 Vinko Erceg, Broadcom 6-10GHz UWB Link Budget and Discussion Date: Authors: Slide 1.
Doc.: n-proposal-statistical-channel-error-model.ppt Submission Jan 2004 UCLA - STMicroelectronics, Inc.Slide 1 Proposal for Statistical.
Doc.: IEEE /1484r1 Submission November 2011 Hongyuan Zhang, et. Al.Slide 1 11ah Data Transmission Flow Date: Authors:
Submission doc.: /1320r00 Bo, Sun (ZTE Corp), et al Slide 1 11aj 45GHz Link Budget for use cases discussion Date: Authors: Nov 2012.
Submission doc.: IEEE 11-13/1059r0 September 2013 Dongguk Lim, LG ElectronicsSlide 1 PHY Abstraction for HEW Evaluation Methodology Date: Authors:
Doc.: IEEE ad Submission September 2009 J. Karaoguz, Broadcom, Chair WirelessHD Coex SGSlide 1 WirelessHD Specification and Coexistence.
Doc.: IEEE /270 Submission July 2003 Liang Li, Helicomm Inc.Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE /314r0 Submission March 2004 Taehyun Jeon, ETRISlide 1 Adaptive Modulation for MIMO-OFDM Systems Taehyun Jeon, Heejung Yu, and Sok-kyu.
Philips Research r0-WNG 1 / 23 IEEE session Hawaii November 2002 Alexei Gorokhov, Paul Mattheijssen, Manel Collados, Bertrand Vandewiele,
Doc.: IEEE /0112r0 Zhanji Wu, et. Al. January 2013 Submission Joint Coding and Modulation Diversity for the Next Generation WLAN Date:
Doc.: IEEE /235r0 Submission May 2001 Philips SemiconductorsSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE xxx a Submission November 2004 Welborn, FreescaleSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE /0075r1 Submission January 2004 H. Sampath, R. Narasimhan, Marvell SemiconductorSlide 1 Advantages and Drawbacks of Circular Delay.
Doc.: IEEE a TG4a July 18th 2005 P.Orlik, A. Molisch, Z. SahinogluSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc: IEEE Submission July 2013 Verso, Mc Laughlin (DecaWave)Slide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE /0929r0 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE a Submission November 2004 Welborn, FreescaleSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
802.11n MIMO-OFDM Standard  IEEE n group  MIMO-OFDM  Increased performance  Transmitter  MAC Enhancements  Results.
Doc.: IEEE /0205r0 Submission Jan 2015 Shiwen He, Haiming Wang Slide 1 Time Domain Multiplexed Pilots Design for IEEE802.11aj(45 GHz) SC PHY Authors/contributors:
Doc.: IEEE /159r0 Submission March 2002 S. Hori, Y Inoue, T. Sakata, M. Morikura / NTT. Slide 1 System capacity and cell radius comparison with.
TI Confidential – NDA Restrictions High output power under 915 MHz FCC regulations without FHSS Digital modulation.
Doc.: IEEE /229r1 Submission March 2004 Alexandre Ribeiro Dias - Motorola LabsSlide 1 Multiple Antenna OFDM solutions for enhanced PHY Presented.
Doc.: IEEE 11-04/0304r0 Submission March 2004 John S. Sadowsky, Intel PER Prediction for n MAC Simulation John S. Sadowsky (
Doc.: IEEE /0535r0 Submission May 2008 Thomas Kenney, Minyoung Park, Eldad Perahia, Intel Corp. Slide 1 PHY and MAC Throughput Analysis with 80.
Performance Analysis of Open Loop SU-MIMO Receivers for IEEE ay
Introduction to OFDM and Cyclic prefix
Doc.: IEEE /0632r1 Submission May 2016 Intel CorporationSlide 1 Performance Analysis of Robust Transmission Modes for MIMO in 11ay Date:
doc.: IEEE <doc#>
Space Time Codes.
Further Rotation Modulation Application
Length 1344 LDPC codes for 11ay
SC 64-QAM in clause 21 PHY Date: Authors: November 2015
doc.: IEEE <doc#>
September 2004 doc.: IEEE n September 2004
HNS Proposal for n Physical Layer
doc.: IEEE <doc#>
John Ketchum, Bjorn A. Bjerke, and Irina Medvedev Qualcomm, Inc.
<month year> doc.: IEEE < e>
6-10GHz Rate-Range and Link Budget
Field Measurements of 2x2 MIMO Communications
Submission Title: [Harmonizing-TG3a-PHY-Proposals-for-CSM]
UWB Receiver Algorithm
Submission Title: FPP-SUN Bad Urban GFSK vs OFDM
ETRI Proposal to IEEE TGn
doc.: IEEE <doc#>
May 2016 doc.: IEEE /XXXXr0 May 2016
7-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
Optimal Combining of STBC and Spatial Multiplexing for MIMO-OFDM
Joint Coding and Modulation Diversity for ac
STBC in Single Carrier(SC) for IEEE aj (45GHz)
9-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
HNS Proposal for n Physical Layer
PHY Performance Evaluation with 60 GHz WLAN Channel Models
NGV PHY Performance Results
NGV PHY Performance Results
Presentation transcript:

doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date: Authors:

doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 2 Abstract This paper is a presentation of analysis, simulation results and actual data from an OFDM MAC/PHY running in 6-9GHz.

doc.: IEEE /0909r0 Submission Legacy UWB summary Channelization –3~10GHz frequency allocated in USA –ROW has slightly different rules; generally 6-9GHz –Transmitter limit, -41.3dBm/MHz –Each band group has three bands of 528MHz spectrum –Hopping each symbol across three bands, it uses 1.584GHz spectrum –10 TFI channels for each band group Phy-rate –Gen-1 53Mbps ~ 480Mbps phy-rate using QPSK, DCM –Gen-2 extension up to 1024Mbps phy-rate using MDCM –Gen-3 extension up to 2048Mbps phy-rate using 2x2 MIMO EVM performance –Legacy UWB requirement: -21dB EVM –Need to have higher EVM to enable higher order of modulation scheme like 32/64QAM OFDM with 128-FFT –Viterbi with Interleaving ( <= 480 Mbps ) for Gen-1 –LDPC ( greater than 480 Mbps ) for Gen-2/3 –STBC, Spatial Multiplexing for Gen-3 July 2012 Jong S. Baek, AlereonSlide 3

doc.: IEEE /0909r0 Submission UWB Channel Summary Wireless Channel Model –CM 1, LOS 0 ~ 4 meter; CM 2, NLOS 0 ~ 4 meter; –CM 3, NLOS 4 ~ 10 meter; –CM 4, fit to have 25ns RMS delay spread to represent an extreme NLOS multipath channel –100 Channel Realization Delay Spread Spectrum –Prefix length : 60.6 ns –This prefix length may not be enough in some case Short range wireless ( < 10 meter ) Maximum payload length –Legacy UWB’s coherence in time : 614.6us –157KB phy-rate –Concatenated data frame required for actual higher throughput Ranging feature –28.4 cm 1056MHz clock –Useful for space-channel management UWB antennas –Widely available: Chip antenna, dipole antenna, PCB antennas –Covers 3~9 GHz, most of them has average 0dBi gain July 2012 Jong S. Baek, AlereonSlide 4 65KB payload length example

doc.: IEEE /0909r0 Submission UWB Operational Rate vs. Range Transmitter power –-41.3dBm/MHz ( integrated -14dBm ), non- hopping feature. –500 MHz bandwidth PL 0 = 50 dB, PL at 1meter –Depending on center frequency PL= PL 0 +20*log10(dist.) Modulation : –MDCM ( equivalent to 16QAM using diversity matrix ) –DCM ( equivalent to QPSK using diversity matrix ) –QPSK Gain from SISO 1) –MRC, 5 dB –2x1 STBC, 1.5 dB –2x2 STBC, 5.5 dB July 2012 Jong S. Baek, AlereonSlide 5 Desktop Application In-ROOM Application Note 1, Medium phy-rate : 400Mbps case

doc.: IEEE /0909r0 Submission Technology comparison July 2012 Jong S. Baek, AlereonSlide 6 ItemsAlereon Gen-1 UWBAlereon Gen-2 UWBAlereon Gen-3 UWB Maximum Data rate( desktop )480Mbps1024Mbps2048 Mbps Minimum Data rate (In-room)53.3Mbps 26Mbps ECCViterbiViterbi, LDPC Maximum Payload length4095 B16 KB157 KB Concatenated data FrameNo Yes Ranging supportNo Yes PreambleLegacy Preamble Turbo Preamble 1GHz channel bonding support No YES Signal processing improvement for CM1/2 SISOMRC-2x2 MIMO, STBC Signal processing improvement for CM3/4 SISOMRC-2x2 MIMO, STBC -Signal Processing for the longer delay spread spectrum

doc.: IEEE /0909r0 Submission Alereon Gen-3 Target Performance Power Consumption –Including MAC/BBP IP with data-converters( ADC/DAC ) –excluding Interface IP such as CODEC, HDMI, USB3.0 -PHY/MAC Total Target Power consumption ( GEN3, 2Gbps ) -TX : 185mW, RX : 275mW Radio Link improvement for NLOS channel condition –Targeting channel model, UWB CM3/CM4 –Develop Turbo Preamble for superior packet acquisition –Link improvement using diversity, and state-of-art receiver signal processing. July 2012 Jong S. Baek, AlereonSlide 7 Operational modeTarget Power consumption TX< 60mW 1Gbps RX< 100mW 2Gbps RX< 150mW RFIC – GEN2 ( TX/RX )~ 230 mW RFIC – GEN3 ( TX/RX )~ 125 mW

doc.: IEEE /0909r0 Submission Packet detection Improvement Alereon Gen-3 uses Turbo Preamble Alereon Gen-3 improves packet detection performance –GEN1 preamble will be inadequate for future applications –Performance simulated over AWGN, all 100 CIR of CM1/2/3/4. –It works reliably when SNR is greater than -3dB. Improved HER( Header Error Rate ) –Simulated 2dB enhancement than legacy preamble case July 2012 Jong S. Baek, AlereonSlide 8 + : desired peak composite correlation -- : false peak composite correlation β : composition correlation for packet detection of turbo preamble.

doc.: IEEE /0909r0 Submission 500MHz Typical STBC/SM example July 2012 Jong S. Baek, AlereonSlide 9 Band1 Channel Separation by using different Band The Same data or different data transmitted at two antennas Band1 Band2 MRC LLR demod FFT LDPC Decoder STBC/SM Detector

doc.: IEEE /0909r0 Submission Band MRC example July 2012 Jong S. Baek, AlereonSlide 10 Band1 Band2 Channel Separation by using different Band The Same data repeated at two antennas Band1 Band2 MRC LLR demod FFT Two independent channel state information for MRC LDPC Decoder

doc.: IEEE /0909r0 Submission Two SISO channel bonding example July 2012 Jong S. Baek, AlereonSlide 11 Band1 Band2 Channel Separation by using different Band Two different data stream at two antennas Band1 Band2 SISO demod FFT Two independent SISO demodulation LDPC Decoder SISO demod

doc.: IEEE /0909r0 Submission Performance Simulation July 2012 Jong S. Baek, AlereonSlide 12

doc.: IEEE /0909r0 Submission Performance Simulation July 2012 Jong S. Baek, AlereonSlide 13

doc.: IEEE /0909r0 Submission Performance Simulation July 2012 Jong S. Baek, AlereonSlide 14

doc.: IEEE /0909r0 Submission Summary The Alereon Gen3 PHY/MAC silicon –Utilizes the 6-9GHz UWB spectrum available worldwide –Peak phy rate using MDCM of 2Gbps –Supports 1x1, 1x2, 2x1, 2x2 antenna configuration –Improvements for more robust CM3/4 –Low power; Complete PHY/MAC less than 400mW including IO blocks. –Widely available UWB antenna choices –Suitable for desktop and in-room applications July 2012 Jong S. Baek, AlereonSlide 15

doc.: IEEE /0909r0 Submission Backup July 2012 Jong S. Baek, AlereonSlide 16

doc.: IEEE /0909r0 Submission QPSK/DCM/MDCM QPSK DCM, 200 coded bit to 50 groups of 4 bits ( equivalent to QPSK ) MDCM, 400 coded bits group to 50 groups of 8 bits ( equivalent to 16QAM )

doc.: IEEE /0909r0 Submission DCM constellation July 2012 Jong S. Baek, AlereonSlide 18 (a) First subcarrier mapping k (b) Second subcarrier mapping k+50