Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg 2+ + 4e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.

Slides:



Advertisements
Similar presentations
Electrochemistry Chapter 19
Advertisements

1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Chapter 18 Electrochemistry. Redox Reaction Elements change oxidation number  e.g., single displacement, and combustion, some synthesis and decomposition.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Electrochemistry Chapter and 4.8 Chapter and 19.8.
Electrochemistry 18.1 Balancing Oxidation–Reduction Reactions
Electrochemistry Chapter 4.4 and Chapter 20. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Predicting Spontaneous Reactions
Chapter 18 Oxidation–Reduction Reactions and Electrochemistry.
Oxidation-Reduction Reactions
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
Oxidation and Reduction (REDOX) reactions?
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
OXIDATION AND REDUCTION REACTIONS CHAPTER 7. REDOX REACTIONS Redox reactions: - oxidation and reduction reactions that occurs simultaneously. Oxidation:
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an.
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Updates Assignment 07 is due Fri., March 30 (in class) Prepare well for the final exam; a good score can compensate for low midterm marks!
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Warmup 2. Balance this redox reaction in acid: + Fe 2+ + Cr 2 O 7 2-  Fe 3+ + Cr 3+ Ni e¯  Ni E° = V Zn e¯  Zn E° = V 1. Write.
1 Electrochemistry Chapter 19 2 Electron transfer reactions are oxidation- reduction or redox reactions. Electron transfer reactions result in the generation.
a.k.a Electrochemistry a.k.a. Oxidation-Reduction Redox!
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Ch.19 & 20 Using chemical reactions to produce electricity.
Oxidation-Reduction Reactions (electron transfer reactions) (redox reactions)
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Electrochemistry. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction (gain e -
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Chapter 18 Electrochemistry Lesson 1. Electrochemistry 18.1Balancing Oxidation–Reduction Reactions 18.2 Galvanic Cells 18.3 Standard Reduction Potentials.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry 9.3 Oxidation Numbers ( only first half, assigning ox numbers) 10.1 Galavanic or Voltaic Cells a)Anode/Cathode/Salt.
Electrochemistry Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an.
Electrochemistry. To obtain a useful current, we separate the oxidation and reduction half-reactions so that electron transfer occurs thru an external.
TYPES OF CHEMICAL REACTIONS Precipitation Reactions Acids Bases Neutralization Combustion Oxidation-Reduction 1.
CHAPTER SIX(19) Electrochemistry. Chapter 6 / Electrochemistry Chapter Six Contains: 6.1 Redox Reactions 6.2 Galvanic Cells 6.3 Standard Reduction Potentials.
Oxidation number
a.k.a. Oxidation-Reduction
Electrochemistry.
Chapter 13: Electrochemistry
Oxidation-Reduction Reactions
Electrochemistry Chapter 19.
Balancing Redox Reactions
Electrochemistry Chapter 19
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
Oxidation-Reduction Reactions
Electrochemical cells
Electrochemistry Chapter 19
Electrochemistry Chapter 7.
Electrochemistry Chapter 19.
Chapter 20 Electrochemistry
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
Electrochemistry.
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

Electrochemistry Chapter 5

2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction (gain e - ) 19.1 Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction is converted to electricity or electrical energy is used to cause a nonspontaneous reaction to occur

Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1.Free elements (uncombined state) have an oxidation number of zero. Na, Be, K, Pb, H 2, O 2, P 4 = 0 2.In monatomic ions, the oxidation number is equal to the charge on the ion. Li +, Li = +1; Fe 3+, Fe = +3; O 2-, O = -2 3.The oxidation number of oxygen is usually –2. In H 2 O 2 and O 2 2- it is –1. 4.4

4.The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is –1. 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion. 5.Group IA metals are +1, IIA metals are +2 and fluorine is always –1. HCO 3 - O = -2H = +1 3x(-2) ? = -1 C = +4 Oxidation numbers of all the atoms in HCO 3 - ? 4.4

Balancing Redox Equations Write the unbalanced equation for the reaction ion ionic form. The oxidation of Fe 2+ to Fe 3+ by Cr 2 O 7 2- in acid solution? Fe 2+ + Cr 2 O 7 2- Fe 3+ + Cr 3+ 2.Separate the equation into two half-reactions. Oxidation: Cr 2 O 7 2- Cr Reduction: Fe 2+ Fe Balance the atoms other than O and H in each half-reaction. Cr 2 O Cr 3+

Balancing Redox Equations 4.For reactions in acid, add H 2 O to balance O atoms and H + to balance H atoms. Cr 2 O Cr H 2 O 14H + + Cr 2 O Cr H 2 O 5.Add electrons to one side of each half-reaction to balance the charges on the half-reaction. Fe 2+ Fe e - 6e H + + Cr 2 O Cr H 2 O 6.If necessary, equalize the number of electrons in the two half- reactions by multiplying the half-reactions by appropriate coefficients. 6Fe 2+ 6Fe e - 6e H + + Cr 2 O Cr H 2 O 19.1

Balancing Redox Equations 7.Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel. 6e H + + Cr 2 O Cr H 2 O 6Fe 2+ 6Fe e - Oxidation: Reduction: 14H + + Cr 2 O Fe 2+ 6Fe Cr H 2 O 8.Verify that the number of atoms and the charges are balanced. 14x1 – 2 + 6x2 = 24 = 6x3 + 2x For reactions in basic solutions, add OH - to both sides of the equation for every H + that appears in the final equation.

Galvanic Cells 19.2 spontaneous redox reaction anode oxidation cathode reduction

Galvanic Cells 19.2 The difference in electrical potential between the anode and cathode is called: cell voltage electromotive force (emf) cell potential Cell Diagram Zn (s) + Cu 2+ (aq) Cu (s) + Zn 2+ (aq) [Cu 2+ ] = 1 M & [Zn 2+ ] = 1 M Zn (s) | Zn 2+ (1 M) || Cu 2+ (1 M) | Cu (s) anodecathode

Standard Reduction Potentials 19.3 Zn (s) | Zn 2+ (1 M) || H + (1 M) | H 2 (1 atm) | Pt (s) 2e - + 2H + (1 M) H 2 (1 atm) Zn (s) Zn 2+ (1 M) + 2e - Anode (oxidation): Cathode (reduction): Zn (s) + 2H + (1 M) Zn 2+ + H 2 (1 atm)

Standard Reduction Potentials 19.3 Standard reduction potential (E 0 ) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm. E 0 = 0 V Standard hydrogen electrode (SHE) 2e - + 2H + (1 M) H 2 (1 atm) Reduction Reaction

19.3 E 0 = 0.76 V cell Standard emf (E 0 ) cell 0.76 V = 0 - E Zn /Zn 0 2+ E Zn /Zn = V 0 2+ Zn 2+ (1 M) + 2e - Zn E 0 = V E 0 = E H /H - E Zn /Zn cell Standard Reduction Potentials E 0 = E cathode - E anode cell 00 Zn (s) | Zn 2+ (1 M) || H + (1 M) | H 2 (1 atm) | Pt (s)

Standard Reduction Potentials 19.3 Pt (s) | H 2 (1 atm) | H + (1 M) || Cu 2+ (1 M) | Cu (s) 2e - + Cu 2+ (1 M) Cu (s) H 2 (1 atm) 2H + (1 M) + 2e - Anode (oxidation): Cathode (reduction): H 2 (1 atm) + Cu 2+ (1 M) Cu (s) + 2H + (1 M) E 0 = E cathode - E anode cell 00 E 0 = 0.34 V cell E cell = E Cu /Cu – E H /H = E Cu /Cu E Cu /Cu = 0.34 V 2+ 0

What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO 3 ) 2 solution and a Cr electrode in a 1.0 M Cr(NO 3 ) 3 solution? Cd 2+ (aq) + 2e - Cd (s) E 0 = V Cr 3+ (aq) + 3e - Cr (s) E 0 = V Cd is the stronger oxidizer Cd will oxidize Cr 2e - + Cd 2+ (1 M) Cd (s) Cr (s) Cr 3+ (1 M) + 3e - Anode (oxidation): Cathode (reduction): 2Cr (s) + 3Cd 2+ (1 M) 3Cd (s) + 2Cr 3+ (1 M) x 2 x 3 E 0 = E cathode - E anode cell 00 E 0 = – (-0.74) cell E 0 = 0.34 V cell 19.3

Batteries 19.6 Leclanché cell 1-Dry cell Zn (s) Zn 2+ (aq) + 2e - Anode: Cathode: 2NH 4 (aq) + 2MnO 2 (s) + 2e - Mn 2 O 3 (s) + 2NH 3 (aq) + H 2 O (l) + Zn (s) + 2NH 4 (aq) + 2MnO 2 (s) Zn 2+ (aq) + 2NH 3 (aq) + H 2 O (l) + Mn 2 O 3 (s)

Batteries Zn(Hg) + 2OH - (aq) ZnO (s) + H 2 O (l) + 2e - Anode: Cathode: HgO (s) + H 2 O (l) + 2e - Hg (l) + 2OH - (aq) Zn(Hg) + HgO (s) ZnO (s) + Hg (l) 2-Mercury Battery 19.6

Batteries Solid State Lithium Battery

Corrosion 19.7

19.8 Electrolysis is the process in which electrical energy is used to cause a nonspontaneous chemical reaction to occur.

Electrolysis of Water 19.8

Home work 1-Give the Oxidation numbers of all the elements in the following: IF 7, K 2 Cr 2 O 7, NaIO 3, KClO 3, Sr(OH) 2 2-Write the balanced chemical reaction And explain the interaction of redox : _Fe 2+ (aq) +_ Ag (s) _Fe (s) + _Ag + _H 2 (g) + _O 2 (g) _H 2 O (l) 3- How did the corrosion reactions? 4- What is electrolysis? 5- How is the electrolysis of water?