Atomic Physics with VUV-FEL Radiation R. Moshammer MPIK-Heidelberg SASE FEL Radiation (Self Amplification of Spontaneous Emission Free Electron Laser)

Slides:



Advertisements
Similar presentations
X-ray Free Electron lasers Zhirong Huang. Lecture Outline XFEL basics XFEL basics XFEL projects and R&D areas XFEL projects and R&D areas Questions and.
Advertisements

Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
Interplay Between Electronic and Nuclear Motion in the Photodouble Ionization of H 2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht, M Lavollée,
Soft X-ray light sources Light Sources Ulrike Frühling Bad Honnef 2014.
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
Imaginary time method and nonlinear ionization by powerful free electron lasers S.V. Popruzhenko Moscow Engineering Physics Institute, Moscow EMMI workshop.
The Dynamics Of Molecules In Intense Ultrashort Laser Fields: Measurements of Ultrashort, Intense Laser-induced Fragmentation of The Simplest Molecular.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Generation of short pulses
The BESSY Soft X-Ray SASE FEL (Free Electron Laser)
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
Research Opportunities in Radiation-Induced Chemical Dynamics Scientific Opportunities for Studying Laser Excited Dynamics at the LCLS: David Bartels Notre.
FEL – opt. Laser cross-correlation Reinhard Kienberger 1,2,(3) 1 Institut für Photonik, Technische Universität Wien, Austria (Ferenc Krausz) 2 SPPS (April.
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
FLASH Experiments with Photons High intensity laser light in the VUV spectral region Harald Redlin; HASYLAB.
X-ray Free-Electron Lasers: Challenges for Theory, Cambridge, Massachusetts, USA, June 19, 2006 Infrared X-ray pump-probe spectroscopy Hans Ågren Department.
Laser-induced vibrational motion through impulsive ionization Grad students: Li Fang, Brad Moser Funding : NSF-AMO October 19, 2007 University of New Mexico.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
EBIT – Electron Beam Ion Trap
Strong-field physics in the x-ray regime Louis DiMauro ITAMP FEL workshop June 21, 2006 fundamental studies of intense laser-atom interactions generation.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
1 M. Aslam Baig National Center for Physics Quaid-i-Azam University Campus, Islamabad Pakistan
Birth of the X-Ray Laser and a New Era of Science Joachim Stohr
Great feeling Walking Ifen without machines Sunday Jan 26, 2007.
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
Fragmentation mechanisms for Methane induced by electron impact
Bright Lights on the Horizon Future Perspectives for Nuclear Resonant Scattering of Synchrotron Radiation Ralf Röhlsberger DESY, Hamburg, Germany.
Nuclear dynamics in the dissociative recombination of H 3 + and its isotopologues Daniel Zajfman Max-Planck-Institut für Kernphysik and Weizmann Institute.
Determination of fundamental constants using laser cooled molecular ions.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
Instrumentation in the Molecular Physics Group Presented by: Mats Larsson.
Alvaro Sanchez Gonzalez Prof. Jon Marangos Prof. Jim Clarke
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS.
Free Electron Lasers (I)
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Ionization Detectors Basic operation
Free-Electron Laser at the TESLA Test Facility More than 50 institutes from 12 countries are involved in the TESLA Project The TESLA Collaboration: Three.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Dynamics of irradiated clusters and molecules Solvated molecules Deposited clusters Free clusters Electron Emission Laser Projectile Irradiation of solvated.
Free-electron lasers Juergen Pfingstner, University of Oslo, October 2015,
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
1 Pengqian Wang Department of Physics Western Illinois University March 4, 2013.
Wave packet dynamics in atoms and molecules Eva Heesel Corinne Glendinning Helen Fielding Department of Chemistry University College London UCL Progress.
Daniel Zajfman Max-Planck Institute for Nuclear Physics Heidelberg, Germany and Weizmann Institute of Science Rehovot, Israel Physics with Colder Molecular.
Xe-based detectors: recent work at Coimbra C.A.N.Conde, A.D. Stauffer, T.H.V.T.Dias, F.P.Santos, F.I.G.M.Borges, L.M.N.Távora, R.M.C. da Silva, J.Barata,
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
Key experiment planned at HITRAP Precision spectroscopy of singly and doubly-excited states of slow HCI Max- Planck-Institut für Kernphysik, Heidelberg.
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
GRK-1203 Workshop Oelde Watching a laser pulse at work
Interactions of Ionizing Radiation
N. Kabachnik Institute of Nuclear Physics, Moscow State University
Dissociation of Molecular Ions Studied by
sub-femtosecond correlated dynamics probed with antiprotons
Xiao Min Tong and Chii Dong Lin
Photoelectron diffraction from small molecules:
Diagnosis of a High Harmonic Beam Using
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
High Harmonic Analysis Using a COLTRIMS Technique
AMO Early Science Capability
Introduction to Free Electron Lasers Zhirong Huang
DAMOP 2008 Interplay between electronic and nuclear motion in the photodouble ionization of H2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht,
Few-body quantum dynamics in strong fields:
Presentation transcript:

Atomic Physics with VUV-FEL Radiation R. Moshammer MPIK-Heidelberg SASE FEL Radiation (Self Amplification of Spontaneous Emission Free Electron Laser) Unique Light Sources VUV-FEL User Facilities I. Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions II.

bunch of N e electrons Undulator Synchrotron-Radiation From Synchrotron Radiation to FEL-Light Power  N e

bunch of N e electrons Undulator Synchrotron-Radiation From Synchrotron Radiation to FEL-Light Power  N e

From Synchrotron Radiation to FEL-Light Undulator Self Amplified Spontaneous Emission (SASE) bunch of N e electrons Power  N e 2 FEL-Radiation

measured Sept From Synchrotron Radiation to FEL-Light Gain in Quality & Power: 5-8 Orders 5-8 Orders of Magnitudes

High-Power Laser versus FEL proposed FEL’s

Full coherence:  /  Photon energies: eV to 10 keV Pulse width :  T < 100 fs Rep. Rate : up to 70 kHz Photons / Pulse : Peak-Power : MW to GW Intensities: I > W/cm 2 Non-Linear Processes in Atoms (Molecules) Atomic Reactions with Small Cross-Sections Unique Light Sources

Proposed Facilities BESSY: E  < 1 keV SLAC : E  < 8 keV TESLA : E  < 14 keV Daresbury, Spring8, Under construction TESLA Test Facility (TTF at DESY Hamburg) Start of user experiments in 2004 E  < 200 eV VUV-FEL User Facilities

Hamburg: TESLA Test Facility (TTF)

Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions Atomic Physics (Approved TTF - Experiments) Universität Frankfurt:R. Dörner, L. Schmidt, Th. Weber Fritz-Haber Institut Berlin:U. Becker Universität Hamburg:B. Sonntag Max-Planck-Institut Heidelberg:R. Moshammer, A. Dorn, D. Fischer, C.D. Schröter, J. Ullrich Max-Planck-Institut Heidelberg: H.B. Pederson, A. Wolf, D. Schwalm, J. Ullrich Weizmann Institute Rehovot:D. Zajfmann Max-Planck-Institut Heidelberg: J.R. Crespo, J. Braun, J. Bruhns, A. Dorn, R. Moshammer, C.D. Schröter, J. Ullrich Fudan University Shanghai Y. Zou LLNL Livermore P. Beiersdorfer

Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions Atomic Physics

Multi-Photon Processes in Atoms Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions

Experimental Approach Supersonic gas jet Atoms, Molecules FEL Spectrometer: Ion-electron coincidence  eV ion energy resolution meV electron resolution Drift Detector position-sensitive, multi-hit Helmholtz coils Reaction-Microscope El. field

Ultra high vacuum : p < mbar Ultra cold gas-jet : T < 1 Kelvin Multi-hit detectors :  = 12 cm,  t ~ 10 ns Laser beam Ion-detector Gas-jet Electron-detector Experimental Approach

From Single Photons to Many Photons Ionisation of Atoms High Intensity Lasers I = W/cm 2 h << I p Many Photons Single Photon h > I p Synchrotron-Radiation Few PhotonsFEL

Single Photon From Single Photons to Many Photons Tunneling  W/cm 2 Electron-Energy E e   Many PhotonsFew Photons ? Dörner (1997)

Dörner et al. (2001) From Single to Double Ionization Single Photon P || /a.u Many Photons 

Single PhotonMany Photons  e2e2 e1e1 e2e2 e1e1 ! well understood ! ! many open questions ! From Single to Double Ionization

e - momentum P || (e 1 ) [a.u.] P || (e 2 ) [a.u.] Experiment too many photons classical field  ponderomotive motion Theory (Goreslavski et al.) Exp.: MBI-Berlin, MPI-Heidelberg, Frankfurt, Marburg Theory: Becker, Faisal, Taylor, Goreslavski..... Problems:

“Few” Photons: FEL - Radiation Helium ponderomotive potential U p  I/  2  0 tt possible Mechanisms: e.g. E   = 50 eV

energy [eV] Helium electron energy tt

Multi-Photon Double Ionization Numerical Solution of the Schrödinger-Equation Parker & Taylor J. Phys. B34 (2001) h = 87 eV I = W/cm 2 momentum electron 1 [a.u.] momentum electron 2 [a.u.] Perturbation theory Colgan & Pindzola PRL 88 (2002) Two-Photon Absorption at h = 45 eV 1 h 2 h 3 h Absorption above threshold

Multi-photon single ionisation Two-photon innershell ionisation More Processes R. Hasbani, E. Cormier and H. Bachau J. Phys. B 33 (2000) 2101 S.A. Novikov and A.N. Hopersky J. Phys. B 33 (2000) 2287

Molecules Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions Atomic Physics

Molecules: Fixed-in-Space Shigemasa et al. PRL 74 (1995) Heiser & Becker et al. PRL 79 (1997) Landers & Dörner PRL 87 (2001) “Molecules illuminated from within” C O 10 eV Auger  

pump h 1 h 2 probe Fixed-in-Space & Pump-Probe photo-electron angular distribution fs time-scale for dissociation “Snapshots” of the time-evolution of intra-molecular potentials “Movie” of the dissociation reaction U. Becker, R. Dörner

Atomic Physics Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions

VUV Photodissociation of Molecular Ions A. Wolf, D. Zajfman, D. Schwalm Energy R DirectPredissociation Spontaneous radiative diss.

Hollow cathode ion source 5 kV electrostatic ion beam trap Einzel lens Kinetic energy release Angular distributions Cross sections Cold molecular ions Relaxation time (CH + ) ~ 0.4 sec VUV FEL Extracted ion bunch extraction time ~ 50 ns ~ 10 pulses per fill of trap Experimental Approach Photodissociation Imaging A. Wolf, D. Zajfman, D. Schwalm Molecular ions e.g. CH + Photon induced Dissociation

from Hartquist, Williams Cambridge Univ. Pr H2H2 H2+H2+ CH + H3+H3+ CO HCO + e-e- C h e-e- H2H2 Interstellar cloud chemistry Example: CH + (production of oxygen-bearing molecules) CO

from Hartquist, Williams Cambridge Univ. Pr H2H2 H2+H2+ CH + H3+H3+ CO HCO + e-e- C h e-e- H2H2 Interstellar cloud chemistry Example: CH + (production of oxygen-bearing molecules) loss mechanism photodissociation CO Ex: Diffuse Cloud ( ξ Ophiuchi): N Obser (CH + ) = 2.9·10 13 cm -2 N Model (CH + ) = 2.8·10 10 cm -2

estimated CH n + H2O+H2O+ H3O+H3O+ NH n + Relevant Photon Energies: Interstellar clouds: < 13.6 eV Close to stars: < 50 eV

estimated CH n + H2O+H2O+ H3O+H3O+ NH n + Relevant Photon Energies: Interstellar clouds: < 13.6 eV Close to stars: < 50 eV FEL -Radiation !!

Multi-Photon Processes in Atoms & Molecules Interactions with Molecular Ions Spectroscopy & Ionisation of Ions Atomic Physics (Approved TTF - Experiments)

1 m FEL-apparatus: (under construction) FEL beam    Experimental Approach J. Crespo, P. Baiersdorfer, J. Ullrich

Precision Spectroscopy on Ions I. Test of 1e - QED at Z  ~ 1 II. Few-Electron QED III. Determination of Nuclear Properties Magnetisation Distribution Magnetic Moment distribution Charge Radius Neutron Distribution IV. Electroweak Radiative Corrections V. Life Time Measurements FEL-Light:  /  

Lamb-shift in Li-like Ions QED contribution FEL bandwidth:  /  Expected accuracy:   BEVALAC (U 89+ )  0.10 eV no data typical exp. accuracy:  E  E =

urgently needed (opacity project) Photoionization of Ions very few data (luminosity) differential data (merged beams) M. A. Bautista J. Phys. B 33 (2000) L419 Photo ionization near threshold: Fe XV [2p 6 3s 2 ( 1 S)] R-matrix OP cross sections Multi-Photon Ionization! Above Threshold Ionization! Few photon – Few electrons! High Harmonic Generation Differential Data

Extracted Beams from the EBIT combine FEL-radiation Future: Exciting LEIF with FEL‘s