5.6 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.

Slides:



Advertisements
Similar presentations
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Advertisements

Riemann sums, the definite integral, integral as area
6.5 The Definite Integral In our definition of net signed area, we assumed that for each positive number n, the Interval [a, b] was subdivided into n subintervals.
Copyright © Cengage Learning. All rights reserved. 5 Integrals.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Quick Review Quick Review Solutions.
Definition: the definite integral of f from a to b is provided that this limit exists. If it does exist, we say that is f integrable on [a,b] Sec 5.2:
The Definite Integral.
THE DEFINITE INTEGRAL RECTANGULAR APPROXIMATION, RIEMANN SUM, AND INTEGRTION RULES.
Definite Integrals Sec When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width.
Georg Friedrich Bernhard Riemann
Aim: Riemann Sums & Definite Integrals Course: Calculus Do Now: Aim: What are Riemann Sums? Approximate the area under the curve y = 4 – x 2 for [-1, 1]
Section 7.2a Area between curves.
Introduction to integrals Integral, like limit and derivative, is another important concept in calculus Integral is the inverse of differentiation in some.
First Fundamental Theorem of Calculus Greg Kelly, Hanford High School, Richland, Washington.
State Standard – 16.0a Students use definite integrals in problems involving area. Objective – To be able to use the 2 nd derivative test to find concavity.
Lets take a trip back in time…to geometry. Can you find the area of the following? If so, why?
5.2 Definite Integrals. Subintervals are often denoted by  x because they represent the change in x …but you all know this at least from chemistry class,
Summation Notation Also called sigma notation
Section 4.3 – Riemann Sums and Definite Integrals
5.2 Definite Integrals.
If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation.
Section 5.2: Definite Integrals
1 §12.4 The Definite Integral The student will learn about the area under a curve defining the definite integral.
Summation Notation Also called sigma notationAlso called sigma notation (sigma is a Greek letter Σ meaning “sum”) The series can be written.
CHAPTER 4 SECTION 4.3 RIEMANN SUMS AND DEFINITE INTEGRALS.
The Definite Integral.
Copyright © Cengage Learning. All rights reserved. 4 Integrals.
Time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we.
5.2 Definite Integrals Bernhard Reimann
Dr. Omar Al Jadaan Assistant Professor – Computer Science & Mathematics General Education Department Mathematics.
Sigma Notations Example This tells us to start with k=1 This tells us to end with k=100 This tells us to add. Formula.
5.2 Definite Integrals. When we find the area under a curve by adding rectangles, the answer is called a Riemann sum. subinterval partition The width.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Calculus Date: 3/7/2014 ID Check Obj: SWBAT connect Differential and Integral Calculus Do Now: pg 307 #37 B #23 HW Requests: SM pg 156; pg 295 #11-17 odds,
Riemann Sums and The Definite Integral. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3.
Chapter 6 Integration Section 4 The Definite Integral.
4.3 Riemann Sums and Definite Integrals. Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a.
Riemann Sums and Definite Integration y = 6 y = x ex: Estimate the area under the curve y = x from x = 0 to 3 using 3 subintervals and right endpoints,
5.2 Definite Integrals Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts.
Chapter 6 Integration Section 5 The Fundamental Theorem of Calculus (Day 1)
Riemann sums & definite integrals (4.3) January 28th, 2015.
5.2 Riemann Sums and Area. I. Riemann Sums A.) Let f (x) be defined on [a, b]. Partition [a, b] by choosing These partition [a, b] into n parts of length.
Riemann Sum. When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width of a rectangle.
Riemann Sum. Formula Step 1 Step 2 Step 3 Riemann Sum.
5.3 Definite Integrals. Example: Find the area under the curve from x = 1 to x = 2. The best we can do as of now is approximate with rectangles.
4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under.
Section 4.2 The Definite Integral. If f is a continuous function defined for a ≤ x ≤ b, we divide the interval [a, b] into n subintervals of equal width.
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
5.2 – The Definite Integral. Introduction Recall from the last section: Compute an area Try to find the distance traveled by an object.
1. Graph 2. Find the area between the above graph and the x-axis Find the area of each: 7.
The Definite Integral. Area below function in the interval. Divide [0,2] into 4 equal subintervals Left Rectangles.
The Fundamental Theorem of Calculus Area and The Definite Integral OBJECTIVES  Evaluate a definite integral.  Find the area under a curve over a given.
5.1 Estimating with Finite Sums
Riemann Sums and The Definite Integral
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Definite Integrals Finney Chapter 6.2.
4.2 Area Greenfield Village, Michigan
Area & Riemann Sums Chapter 5.1
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Section 4.3 Riemann Sums and The Definite Integral
Copyright © Cengage Learning. All rights reserved.
6.2 Definite Integrals.
5.1 Estimating with Finite Sums
6-2 definite integrals.
Presentation transcript:

5.6 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington

When we find the area under a curve by adding rectangles, the answer is called a Riemann sum. subinterval partition The width of a rectangle is called a subinterval. The entire interval is called the partition. Subintervals do not all have to be the same size.

subinterval partition If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation for the area gets better. if P is a partition of the interval

is called the definite integral of over. If we use subintervals of equal length, then the length of a subinterval is: The definite integral is then given by:

Leibnitz introduced a simpler notation for the definite integral: Note that the very small change in x becomes dx.

Integration Symbol lower limit of integration upper limit of integration integrand variable of integration

Example: Express the following limit as a definite integral

We have the notation for integration, but we still need to learn how to evaluate the integral.

Definitions So the area below the x-axis is considered negative… So evaluating the integral in reverse order negates the area…

Ex. If the velocity is: The distance is equal to the area under the curve! Notice that the area is a trapezoid. Find the distance traveled.

Ex. Use formulas from geometry to find: The definite integral is equal to the area under the curve!

Ex. Use formulas from geometry to find: