Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)

Slides:



Advertisements
Similar presentations
Dense Molecular Gas in Galaxies Near and Far Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
Advertisements

The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
Buried AGNs in nearby ULIRGs Masa Imanishi (National Astronomical Observatory of Japan)
A CO(3-2) Survey of Warm Molecular Gas in Nearby Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger.
Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation Jingwen Wu & Neal J. Evans II (Univ. of Texas at Austin) ; Yu Gao.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
The Universe of Galaxies. A Brief History Galileo.
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
In the search for CO emission in young, low- metallicity spiral disks and dwarf galaxies: Prospects for ALMA Armando Gil de Paz (UCM), Kartik Sheth (Caltech/SSC),
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Dust and Stellar Emission of Nearby Galaxies in the KINGFISH Herschel Survey Ramin A. Skibba Charles W. Engelbracht, et al. I.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Jeff Mangum (NRAO) Jeremy Darling (CU Boulder) Karl Menten (MPIfR Bonn) Christian Henkel (MPIfR Bonn) Meredith MacGregor (NRAO / Harvard University) Brian.
Radio continuum, CO, and thermal infrared emission in nearby star-forming galaxies Tony Wong CSIRO Australia Telescope & University of New South Wales.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Star Formation and Dynamics in Galaxies Santiago GARCIA-BURILLO Observatorio Astronómico Nacional (OAN)-Spain The Dusty Universe, October 27-29, 2004,
Frayer (1) Redshifted Molecular Gas – Evolution of Galaxies David T. Frayer (NRAO) ALMA-Band ALMA Band-2 (68-90 GHz) is a crucial missing band for.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
STScI March 24, 2004 Ebb & Flow: Molecular Gas and Star Formation in Nearby Spirals Michele Thornley Bucknell University/STScI With grateful thanks to:
The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
Starburst in NGC 6090 Junzhi Wang Purple mountain observatory Collaborators: Qizhou Zhang, Zhong Wang, Giovanni G. Fazio, Paul T. P. Ho (CFA) Yuefang Wu.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Molecular Gas in Low-Redshift Radio Galaxies & Quasi-Stellar Objects Detected by IRAS Aaron Evans (Stony Brook) J. Mazzarella (IPAC) J. Surace (SSC) D.
Hunt for Molecules in Local Universe Galaxies Santiago GARCIA-BURILLO Observatorio Astronómico Nacional (OAN)-Spain Hunt for Molecules, November 19-20,
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
Radio Emission in Galaxies Jim Condon NRAO, Charlottesville.
Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer George J. Bendo Very Nearby Galaxies Survey.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Active Galaxies and Supermassive Black Holes Chapter 17.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
CO Rotation Curves High-velocity Rotation, Deep Potential, & Dense Molecular Cores in Spiral Centers Sofue, Y., Koda, J., Nakanishi, H., Onodera, S., Egusa,
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
Low-luminosity Extragalactic H 2 O Masers Yoshiaki Hagiwara ASTRON.
SED of Galaxies in the IR–MM domain Frédéric Boone LERMA, Observatoire de Paris.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
Purple Mountain Obs. CAS CHINA 2005 LiJiang International Starburst Workshop The Dense Molecular Connection Between IR and RC Emission In Galaxies Fan.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Yoshimasa Watanabe (U. Tsukuba)
SWAN: Survey of Water & Ammonia in Nearby Galaxies
Interferometric 3D observations of LIRGs
Chris Wilson, McMaster University
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Galaxies With Active Nuclei
Galaxies With Active Nuclei
VNGS science highlight: PDR models of M51
Presentation transcript:

Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA) International Workshop “Extreme Starburst: Near and Far” Lijiang, August, 2005

Introduction: CO as a tracer of H 2 in galaxies Lower lying CO rotational line transitions are often used as tracers of H 2. CO(1-0), (2-1) surveys in galaxies Young et al. (1995) 300 FCRAO Braine & Combes (1992) 81 IRAM-30m … CO is a good tracer of density waves, spirals, bars, rings. High spatial resolution CO(1-0) surveys in galaxies BIMA-SONG (Regan et al. 2001; Helfer et al. 2003) NUGA (S. García-Burillo F. Combes et al ) NMA (Sakamoto et al. 1999)

Introduction: Is CO a Good Tracer of SF in galaxies? L HCN ~ L IR tight linear correlation  Star formation driven L IR CO(1-0): poor tracer? Gao & Solomon (2004 ApJL)

Introduction: How about sub-mm CO lines? Better tracers for the warmer/denser molecular gas R 31 = I CO(3-2) /I CO(1-0) is more sensitive to the excitation of molecular gas than R 21 = I CO(2-1) /I CO(1-0) R 31 is expected to be peaked in regions of active SF High J CO lines will put more constraints to the excitation of molecular gas JuJu E u (K) n c (cm -3 ) ………~10 6 LVG model of R 31

Bulk of CO emission is from diffused warm molecular gas Two components: dense cloud cores + diffused interclouds LVG model: T= K n= cm -3 PDR model: ‘low’ and ‘high’ Excitation components (Mao et al A&A) Introduction: M82 as an example The HHT CO(7-6) map of M82

Introduction: CO SED M82 CO(7-6): first time the weakening in CO SED The CO SED turnover can serve as an indicator of gas excitation M82, NGC 253: 6-5 Henize 2-10, BR (z=4.7), Cloverleaf (z=2.6): >7-6 SMM J : 5-4 Weiss et al astro-ph

Introduction: Extragalactic CO(3-2) surveys Devereux et al. (1994) 7 starbursts; =0.64 +/-0.06 Mauersberger et al. (1999) 28 nearby galaxies + 1 ULIRG; =0.63 ( ) Dumke et al. (2001) Mapping Meier et al. (2001) 8 Dwarf starbursts; =0.60 +/-0.06 Yao et al. (2003) 60 SLUGS cz  1900 km s -1 ; S 60  m  5.24 Jy; L FIR  L O =0.66 Vila-vilaro B. et al. (2003) 10 eraly-type galaxies Hafok et al. (2003) 16 in Virgo Cluster; = Narayanan et al. (2005) 15 Starbursts + (U)LIRGs

What’s the general properties of warm molecular gas? Can CO(3-2) be a good tracer of SF? Can R 31 be a good tracer of the excitation of molecular gas? Any correlation between R 31 and L IR, Hubble type, IR colors, merging sequence? HHT CO(3-2) Survey 0. Motivations

HHT CO(3-2) Survey I. Observations The D=10.5  = 22" at m The Sample: Normal galaxies: 49 (S 100  m >50 Jy; Braine et al. Seyfert & LINER: 61 (Seyfert: 41; LINER:44; (U)LIRGs: 10 (Solomon et al. 1997) The Heinrich-Hertz-Telescope Mt. Graham, type: cluster galaxies: 10

HHT CO(3-2) spectra of nearby galaxies. HHT CO(3-2) Survey II. The spectra

Detection rate -- 85/120 (71%) Normal galaxies: 35/49 (71%) Seyfert & LINER: 42/61 (69%) (U)LIRGs: 8/10 (80%) Early type: 11/23 (48%) Virgo cluster galaxies: 8/10 (80%) HHT CO(3-2) Survey III. Detection rates

CO(3-2) in LIRGs I. The Merging sequence total H 2 content decreases as the projected separation of merger nuclei decreases (Gao & Solomon 1999)  What about the excitation conditions of the molecular gas?  Are these also affected by the interaction?

II. The sample The sample (16) (Lo et al. 1997;2000; Gao et al. 1997;2001) Early Mergers UGC 2369, Arp 303, UGC 8335, Arp 240, Arp 302, Arp 293, NGC 6670 Intermediate Mergers Arp 256, Mrk 848, Arp 55, NGC 7592 Advanced Mergers NGC 1614, NGC 5256, NGC 6090, NGC 3110, NGC LIRGs/22 pointings (5 overlaps with the SLUGS sample)

III. The spectra 12 LIRGs/19 positions observed, all detected in CO(3-2)

HHT CO(3-2) Survey IV. The statistics

HHT CO(3-2) Survey IV. The statistics – R 31 ; Matching beam line ratios R 31 22”, 51 galaxies) ; =0.71 +/-0.05, median=0.65 (Seyfert: =0.68 [0.4:1], ULIRG: =0.77 [0.4:1.2]) ; No obvious correlation to L FIR, Hubble type, IR colors ; Caution: (U)LIRGs: global, unresolved, R 31 / Nearby starbursts: centers- only

Mapping R31 distribution in M82 Weiss et al Mao et al CO(1-0) V-band OVRO + IRAM30m lower R 31 than in the central molecular disk gas properties are similar to the nuclear ‘low’ excitation components streamer/outflow regions

CO SED of M82 Shift to cosmological distance: M82(total)  (U)LIRGs z Weiss et al A&A 3x3 kpc

High Resolution SMA CO(3-2) in M51 Strong central concentration Weak north-west arm High line ratio: I 32 /I 10 ~ 2  hot and dense mol. Gas High R 31 in outflow and shocked gas around SNRs in the MW  gas dynamics around the Seyfert 2 nucleus  heating by the central AGN? Common for Seyfert galaxies? Looking for more Seyfert (Matsushita et al. 2004)

HHT CO(3-2) Survey V. L CO(3-2) vs. L FIR

HHT CO(3-2) Survey V. L CO(3-2) vs. L FIR

HHT CO(3-2) Survey V. L CO(3-2) vs. L FIR LIRGs ULIRGs

HHT CO(3-2) Survey V. L CO(3-2) vs. L FIR 60 SLUGS: log 10 L CO(3-2) = / / log 10 L FIR (Yao et al ) 28 nearby gals: log 10 L CO(3-2) = log 10 L FIR (Mauersberger et al. 1999) 0.58 for CO(1-0) LIRGs ULIRGs Almost linear 14(U)LIRGs+SLUGS: log 10 L CO(3-2) = log 10 L FIR (Narayanan et al. astro-ph/ )

Summary Almost linear correlation of L CO(3-2) -L FIR With a power of 0.95 CO(3-2) can trace warm-dense star forming gas =0.71, median=0.65 No obvious correlations are found between R 31 and Hubble type, L FIR, infrared colors at 22” resolution Mapping is needed for the nearby galaxies to make their R 31 compared to that of (U)LIRGs