Spectroscopy of d 6 Ru and Ir polypyridyl complexes for solar cells, OLED and NLO applications: Insights from theory Spectroscopy of d 6 Ru and Ir polypyridyl.

Slides:



Advertisements
Similar presentations
Uv spectroscopy.
Advertisements

Cyclometallated Photoconductors: Attractive Complexes for Optoelectronic Applications Dr. Nicolas Godbert LASCAMM Unità INSTM della Calabria Universita.
Quadruply bonded M 2 complexes incorporating thienylvinyl carboxylates Carly R. Reed, Malcolm H. Chisholm, Claudia Turro th International Symposium.
Multiple band gap devices for solar water splitting Tfy Special Course in Advanced Energy Technologies Priit Jaanson.
Pore-size Dependence of Ion Diffusivity in Dye-sensitized Solar Cells Yiqun Ma SUPERVISOR: Dr. Gu Xu 1.
Dye-Sensitized Solar Cells Цветосенсибилизиованные солнечные ячейки.
Optical absorption spectra of chromophores in solution: the role of the solvent Ralph Gebauer Monday, July 7 th, 2014 Mastani Summer School IISER – Pune.
Excited state calculations for polyene and PPV systems Chao Wu.
Investigating excited state dynamics in 7-azaindole Nathan Erickson, Molly Beernink, and Nathaniel Swenson 1.
UV / visible Spectroscopy
Introduction to Molecular Photophysics
Ruangchai Tarsang Department of Chemistry, Faculty of Science, Ubon Ratchathani University Center for Organic Electronics.
Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d1, d4, d6 and d9 ions Lecture 2: Interpreting electronic.
Some applications related to Chapter 11 material: We will see how the kind of basic science we discussed in Chapter 11 will probably lead to good advances.
Simulation of X-ray Absorption Near Edge Spectroscopy (XANES) of Molecules Luke Campbell Shaul Mukamel Daniel Healion Rajan Pandey.
Infrared spectroscopy of Li(methylamine) n (NH 3 ) m clusters Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University.
Shanshan Wu 1 Aug 1st, 2012 Advisor: James Glimm 1,2 Collaborators: Michael McGuigan 2, Stan Wong 1,2, Amanda Tiano 1 1.Stony Brook University 2.Brookhaven.
Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells.
Solvatochromism and Photo-Induced Intramolecular Electron Transfer Katelyn J. Billings; Bret R. Findley 1 1 Department of Chemistry and Physics, Saint.
A method to rapidly predict the injection rate in Dye Sensitized Solar Cells Daniel R. Jones and Alessandro Troisi PG Symposium 2009.
Optical Engineering of Metal Oxides
Dye Sensitised Solar Cells
Electrical transport in ZnO and TiO 2 nanowires (for solar cell application) Chun-Chung Su and Chao-Cheng Kaun Advanced Computation & Modeling Group.
1 Li Xiao and Lichang Wang Department of Chemistry & Biochemistry Southern Illinois University Carbondale The Structure Effect of Pt Clusters on the Vibrational.
E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli
68th International Symposium on Molecular Spectroscopy Ohio State University June 17-21, 2013 Wei-Li Li, Tian Jian, Gary V. Lopez, and Lai-Sheng Wang Department.
Nichole Squair and Robert J. LeSuer Department of Chemistry and Physics, Chicago State University, Chicago, IL We report on the use of Scanning Electrochemical.
Natural Transition Orbitals Richard L
Pyridine Ligands. and the Stability of Birju Patel Johns Hopkins University December 19, 2007.
An Interfacial Electron Transfer Switch: Ruthenium-dppz Compounds Anchored to Nanocrystalline TiO 2 Mauricio Arias, Ana Maria Leiva, and Barbara Loeb*
Example of an application for electronic spectroscopy in coordination compounds: Solar Energy Conversion.
Reporter: Ting Lei Supervisor: Prof. Jian Pei Organic Solar Cells 2009/10/23 Mechanism and Design Strategies.
Zinc Tetra Phenyl Porphyrin Chromophores February 2009.
SPECTROSCOPY OF AND PHOTOINDUCED ELECTRON TRANSFER IN THE COMPLEXES OF C 2 H 4 WITH I AND I 2 Lisa George, Aimable Kalume, and Scott A. Reid Department.
Daniel Weidinger 1, Cassidy Houchins 2 and Jeffrey C. Owrutsky 3 (1)National Research Council Postdoctoral Researcher (2)SRA International (3)Chemistry.
The MD simulation shows that in the case of PBN, reorientation of the AN molecule to reach the optimal geometry of the CT-AQ state is not likely to be.
A Method to Rapidly Predict the Injection Rate in Dye Sensitized Solar Cells. Daniel R. Jones and Alessandro Troisi Department of Chemistry and Centre.
1 CHIRAL RECOGNITION IN NEUTRAL AND IONIC MOLECULAR COMPLEXES Ananya Sen, Aude Bouchet, Valeria Lepere, Katia Le Barbu Debus, Anne Zehnacker Rentien Institut.
The Synthesis, Characterization and Photophysics of a New Class of Inorganic Ligands for Metal-Metal Multiply Bonded Compounds Christopher B. Durr.
OPTICAL PROPERTIES OF ADAMANTYL END-CAPPED POLYYNES: FROM EXPERIMENTS AND FIRST PRINCIPLES SIMULATIONS Daniele Fazzi Matteo Tommasini Andrea Lucotti Mirella.
Zinc Porphyrin Chromophores A qualitative introduction…
Computational Study of the Reduction of Carbon Dioxide by Iron Modified TiO 2 By: Meghan Moloney Mentor: Dr. Jean M. Andino Space Grant Symposium April.
Suman K. Pal, Patrick Z. El-Khoury, Andrey S.
MD (here)MD*EXP (kcal/mole)  (D) D (cm/s) 298K ENHANCED H ION TRANSPORT AND HYDRONIUM ION FORMATION T. S. Mahadevan.
Molecular Spectroscopy OSU June TRANSIENT ABSORPTION AND TIME-RESOLVED FLUORESCENCE STUDIES OF SOLVATED RUTHENIUM DI-BIPYRIDINE PSEUDO-HALIDE.
Eletrophosphorescence from Organic Materials Excitons generated by charge recombination in organic LEDs Spin statistics says the ratio of singlet : triplet,
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Tyler P. Troy, Scott H. Kable, Timothy W. Schmidt Department of Chemistry, University of Sydney Scott A. Reid Department of Chemistry, Marquette University.
Simulation of Proton Transfer in Biological Systems Hong Zhang, Sean Smith Centre for Computational Molecular Science, University of Queensland, Brisbane.
Using Terahertz Spectroscopy to Study Systems with Solar Energy Applications Rebecca L. Milot, Gary F. Moore, Gary W. Brudvig, Robert H. Crabtree, and.
HUI LIU, JINJUN LIU, Department of Chemistry, HEMANT M. SHAH and BRUCE W. ALPHENAAR, Department of Electrical & Computer Engineering, University of Louisville.
Introduction to Infrared Spectroscopy
Some applications related to Chapter 11 material: We will see how the kind of basic science we discussed in Chapter 11 will probably lead to good advances.
Dinuclear Ruthenium Complexes as Photosensitizers Emily Woodard Department of Chemistry.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
The National Centre for Sensor Research Density functional theory investigation of ruthenium polypyridyl complexes incorporating 1,2,4-triazole Introduction.
Saifful Kamaluddin bin Muzakir
M. Dhanasekar, Dr. S. Venkataprasad Bhat*
Zhongjing Li Advisor: Professor Wenfang Sun
High Performance Computing in materials science from the semiempirical approaches to the many-body calculations Fabio Trani Laboratoire de Physique de.
Joey Mancinelli, Zane Relethford, Roy Planalp
to small structural modifications
Mike Scudder CHEM 7350 November 15, 2017.
Investigation of the Effect of Ligands on Metal-to-Ligand Charge Transfer Transitions using d10-complexes of Group 11 Elements Evangelos Rossis, Roy Planalp,
Molecular Mechanism of Hydrogen-Formation in Fe-Only Hydrogenases
Density functional theory calculations on
Prediction of (TiO2)x(Cu2O)y Alloys for Photoelectrochemical Water Splitting Heng-Rui Liu, Ji-Hui Yang, Yue-Yu Zhang, Shiyou Chen, Aron Walsh, Hongjun.
Raman Spectroscopy A) Introduction IR Raman
Anran Li, Jie Lin, Zhongning Huang, Xiaotian Wang, Lin Guo  iScience 
Presentation transcript:

Spectroscopy of d 6 Ru and Ir polypyridyl complexes for solar cells, OLED and NLO applications: Insights from theory Spectroscopy of d 6 Ru and Ir polypyridyl complexes for solar cells, OLED and NLO applications: Insights from theory Simona Fantacci Istituto CNR di Scienze e Tecnologie Molecolari (ISTM-CNR) & UdR INSTM Perugia Dipartimento di Chimica Via Elce di Sotto, 8, Perugia, ITALY

Computational approach Geometry Optimizations (CP-ultrasoft pseudopotentials) Calculation of excited states energies and oscillator strengths by Time Dependent-DFT (G03, ADF) Inclusion of solvation effects by a Polarizable Continuum Model (PCM) (G03, CP, ADF) Car-Parrinello (PBE//PWs) G03(B3LYP/DVZP), ADF(TZP,BP86) Methodology Overview Spectroscopic properties of Ru- and Ir- complexes: a) S. Fantacci, F. De Angelis, A. Selloni J. Am. Chem. Soc. 2003, 125, b) F. De Angelis, S. Fantacci, A. Selloni Chem. Phys. Lett. 2004, 389, 204. c) S. Fantacci, F. De Angelis,..., A. Selloni J. Am. Chem. Soc. 2004, 126, d) F. De Angelis, A. Tilocca, A. Selloni J. Am. Chem. Soc. 2004, 126, e) S. Fantacci, F. De Angelis, A. Sgamellotti,... J. Am. Chem. Soc , f) M. K. Nazeeruddin, F. De Angelis, S. Fantacci,... J. Am. Chem. Soc , g) F. De Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin Chem. Phys. Lett. 2005, 415, 115. h) F. Tessore, D. Roberto,..., R. Ugo, F. De Angelis Inorg. Chem. 2005, 44, i) F. De Angelis, S. Fantacci, A. Sgamellotti,.., R. Ugo Dalton Trans. 2005, 2006, 852. l) C. Barolo, M.K. Nazeeruddin, S. Fantacci,… M. Grätzel Inorg. Chem. 2006, 45, m) M.K. Nazeeruddin,… F. De Angelis, S. Fantacci, M. Grätzel Inorg. Chem. 2006, 45, n) F. De Angelis, S. Fantacci,... M. Grätzel, M.K. Nazeeruddin Inorg. Chem. 2007, 46, in press. o) C. Dragonetti,… R. Ugo, F. De Angelis, S. Fantacci, A. Sgamellotti … Inorg. Chem. 2007, 46, in press.

Ru(II)-polypyridyl sensitizers for TiO 2 in dye sensitized solar cells (DSSCs) M. Graetzel, Nature, 2001, 414, 338.; M. Graetzel Inorg. Chem. 2005, 44, The dye, adsorbed on the semiconductor oxide surface, absorbs light in the visible region. 2.An electron is then transferred from the dye excited state to the TiO 2 conduction band. 3.The oxidized dye is regenerated by a support electrolyte. [Ru(4,4’COOH2,2’bpy)2(NCS)2], defined as N3 An efficient solar cell sensitizer should have broad range of visible light absorption, form long-living excited states with energies almost matching those of the TiO 2 conduction band and show a high thermal stability.

N3 4- Tuning the properties of Ru(II) TiO 2 sensitizers N3 N945 Effect of deprotonation and ligand substitution Bypyridine functionalization Ligand engineering Cl N621 N866

Energy (eV) Intensity (arb. units) Exp. Theor. MLCT (I) MLCT (II)  * ethanol water (III) Experimental and calculated absorption spectra of N3 in water solution LUMO HOMO-3 HOMO S. Fantacci, F. De Angelis, A. Selloni J. Am. Chem. Soc. 2003, 125, F. De Angelis, S. Fantacci, A. Selloni Chem. Phys. Lett. 2004, 389, 204. Md. K. Nazeeruddin, F. De Angelis,.., M. Grätzel J. Am. Chem. Soc. 2005, 127,

Modeling of TiO 2 surface Stoichiometric anatase Ti 38 O 76 cluster of nanometric dimensions exposing (101) surfaces B3LYP/3-21g* (NEQ-PCM) TD-DFT gap in solution: 3.20 eV KS gap in solution: 3.78 eV TD-DFT gap in vacuo: 2.82 eV KS gap in vacuo: 3.48 eV Experimental gap in acqueous solutions: 3.20 – 3.30 eV F. De Angelis, A. Tilocca, A. Selloni J. Am. Chem. Soc. 2004, 126,

Car-Parrinello molecular dynamics simulation of N3 adsorption on TiO 2 surface Starting from the final configuration we performed local geometry optimizations placing the protons on different sites.

1H + on dye / 1H + on TiO 2 0H + on dye / 2H + on TiO kcal/mol+11.0 kcal/mol +9.9 kcal/mol 1H + on dye / 3H + on TiO

Simulation of the Absorption spectrum Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B, 2003, 107, Md. K. Nazeeruddin, F. De Angelis, S. Fantacci..,M. Grätzel J. Am. Chem. Soc., 2005, 127,

Ir(III)-polypyridyl complexes as phosphorescent dyes for OLED and NLO Strong and tunable emission in the visible region ( nm) Φ max =85% High transparency in the visible region and high NLO response (  β EFISH > esu) [Ir(ppy)2(5-X-1,10-phen)] + X=NMe 2 X=NO 2

Phosphorescent Ir(III) complexes for OLED phenylpyridine-phenanthroline (ppy-phen) phenylquinoline-phen X = Me, NMe 2, NO 2 (ppq-phen) M.K. Nazeeruddin, R.T. Wegh, C. Klein, Q. Wang, F. De Angelis, S. Fantacci, M. Grätzel, Inorg. Chem. 2006, 45, F. De Angelis, S. Fantacci, N. Evans, C. Klein,..., M. Grätzel, M.K. Nazeeruddin Inorg. Chem. 2007, 46, in press. C. Dragonetti, L. Falciola, P. Mussini, S. Righetto, D. Roberto, R. Ugo, F. De Angelis, S. Fantacci, A. Sgamellotti et al. Inorg. Chem. 2007, 46, in press.

Ir(III) cyclometallated complexes as multifunctional NLO Materials X=NMe 2 X=NO 2 L+2 L+1 L H H-1 L+2 L+1 L H H-1 Compound EFISH  b ( Dcm 5 esu -1 ) X=H-1270 X=Me-1565 X=NMe X=NO X=NO 2, NMe 2

Absorption spectrum, SOS-  X=NO 2 -NMe 2 Only negative contributions to  Positive and negative contributions to  C. Dragonetti, S. Righetto, D. Roberto, R. Ugo, A. Valore, F. De Angelis, S. Fantacci, A. Sgamellotti Chem. Comm. submitted phen-(ILCT) Ir->phen (MLCT)  =transition dipole moment  =excitation energy ground and excited state dipole moments

Conclusions Acknowledgments: Prof. Renato Ugo: Ir(III) complexes for OLED and NLO materials Prof. Michael Grätzel: TiO 2 Ru(II) photosensitizers and Ir(III) complexes for OLED Dr. Filippo De Angelis: TiO 2 calculations and CP simulations Theoretical and computational advances allow the study of systems of large and increasing complexity with unprecedented accuracy Quantitative agreement between theory and experimental optical properties of complex systems Interpretative and predictive power of modeling