1 1 Slide © 2004 Thomson/South-Western Chapter 3, Part A Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected.

Slides:



Advertisements
Similar presentations
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Advertisements

Chapter 6 Continuous Probability Distributions
Yaochen Kuo KAINAN University . SLIDES . BY.
1 1 Slide Chapter 6 Continuous Probability Distributions n Uniform Probability Distribution n Normal Probability Distribution n Exponential Probability.
1 1 Slide MA4704Gerry Golding Normal Probability Distribution n The normal probability distribution is the most important distribution for describing a.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide Continuous Probability Distributions Chapter 6 BA 201.
Chapter 3 part B Probability Distribution. Chapter 3, Part B Probability Distributions n Uniform Probability Distribution n Normal Probability Distribution.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter-6 Continuous Probability Distributions.
Chapter 6 Continuous Probability Distributions
Continuous Probability Distributions
Business and Finance College Principles of Statistics Eng. Heba Hamad 2008.
Biostatistics Unit 4 - Probability.
Chapter 3 Probability Distribution. Chapter 3, Part A Probability Distributions n Random Variables n Discrete Probability Distributions n Binomial Probability.
1 1 Slide © 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Continuous Probability Distributions
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2006 Thomson/South-Western Chapter 6 Continuous Probability Distributions n Uniform Probability Distribution n Normal Probability Distribution.
Continuous Probability Distributions Uniform Probability Distribution Area as a measure of Probability The Normal Curve The Standard Normal Distribution.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2006 Thomson/South-Western Chapter 5 Discrete Probability Distributions n Random Variables n Discrete Probability Distributions.
QMS 6351 Statistics and Research Methods Probability and Probability distributions Chapter 4, page 161 Chapter 5 (5.1) Chapter 6 (6.2) Prof. Vera Adamchik.
Continuous Probability Distributions A continuous random variable can assume any value in an interval on the real line or in a collection of intervals.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 5 Discrete Probability Distributions
DISCREETE PROBABILITY DISTRIBUTION
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
Chapter 5 Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected Value and Variance n Binomial Probability.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 5 Discrete Probability Distributions n Random Variables n Discrete.
Chapter 3, Part B Continuous Probability Distributions
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Discrete Probability Distributions (Random Variables and Discrete Probability Distributions) Chapter 5 BA 201.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
BIA2610 – Statistical Methods Chapter 6 – Continuous Probability Distributions.
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. Chapter 6 Continuous Probability Distributions f ( x ) x x Uniform x Normal n Normal Probability.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected Value and Variance n Binomial Probability Distribution.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 01 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance Binomial Probability Distribution.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 5 Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected Value and Variance
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 6 Continuous Probability Distributions n Uniform Probability Distribution n Normal.
1 1 Slide © 2003 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Continuous Probability Distributions. A continuous random variable can assume any value in an interval on the real line or in a collection of intervals.
Business Statistics (BUSA 3101). Dr.Lari H. Arjomand Continus Probability.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide Chapter 2 Continuous Probability Distributions Continuous Probability Distributions.
St. Edward’s University
Special Continuous Probability Distributions
St. Edward’s University
St. Edward’s University
Chapter 6 Continuous Probability Distributions
Statistics for Business and Economics (13e)
Econ 3790: Business and Economics Statistics
Chapter 6 Continuous Probability Distributions
Chapter 5 Discrete Probability Distributions
St. Edward’s University
Presentation transcript:

1 1 Slide © 2004 Thomson/South-Western Chapter 3, Part A Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected Value and Variance n Binomial Probability Distribution n Poisson Probability Distribution

2 2 Slide © 2004 Thomson/South-Western A random variable is a numerical description of the A random variable is a numerical description of the outcome of an experiment. outcome of an experiment. A random variable is a numerical description of the A random variable is a numerical description of the outcome of an experiment. outcome of an experiment. Random Variables A discrete random variable may assume either a A discrete random variable may assume either a finite number of values or an infinite sequence of finite number of values or an infinite sequence of values. values. A discrete random variable may assume either a A discrete random variable may assume either a finite number of values or an infinite sequence of finite number of values or an infinite sequence of values. values. A continuous random variable may assume any A continuous random variable may assume any numerical value in an interval or collection of numerical value in an interval or collection of intervals. intervals. A continuous random variable may assume any A continuous random variable may assume any numerical value in an interval or collection of numerical value in an interval or collection of intervals. intervals.

3 3 Slide © 2004 Thomson/South-Western Expected Value and Variance The expected value, or mean, of a random variable The expected value, or mean, of a random variable is a measure of its central location. is a measure of its central location. The expected value, or mean, of a random variable The expected value, or mean, of a random variable is a measure of its central location. is a measure of its central location. The variance summarizes the variability in the The variance summarizes the variability in the values of a random variable. values of a random variable. The variance summarizes the variability in the The variance summarizes the variability in the values of a random variable. values of a random variable. The standard deviation, , is defined as the positive The standard deviation, , is defined as the positive square root of the variance. square root of the variance. The standard deviation, , is defined as the positive The standard deviation, , is defined as the positive square root of the variance. square root of the variance. Var( x ) =  2 =  ( x -  ) 2 f ( x ) E ( x ) =  =  xf ( x )

4 4 Slide © 2004 Thomson/South-Western n Four Properties of a Binomial Experiment 3. The probability of a success, denoted by p, does not change from trial to trial. not change from trial to trial. 3. The probability of a success, denoted by p, does not change from trial to trial. not change from trial to trial. 4. The trials are independent. 2. Two outcomes, success and failure, are possible on each trial. on each trial. 2. Two outcomes, success and failure, are possible on each trial. on each trial. 1. The experiment consists of a sequence of n identical trials. identical trials. 1. The experiment consists of a sequence of n identical trials. identical trials. stationarityassumption Binomial Probability Distribution

5 5 Slide © 2004 Thomson/South-Western Poisson Probability Distribution n Two Properties of a Poisson Experiment 2. The occurrence or nonoccurrence in any interval is independent of the occurrence or interval is independent of the occurrence or nonoccurrence in any other interval. nonoccurrence in any other interval. 2. The occurrence or nonoccurrence in any interval is independent of the occurrence or interval is independent of the occurrence or nonoccurrence in any other interval. nonoccurrence in any other interval. 1. The probability of an occurrence is the same for any two intervals of equal length. for any two intervals of equal length. 1. The probability of an occurrence is the same for any two intervals of equal length. for any two intervals of equal length.

6 6 Slide © 2004 Thomson/South-Western Chapter 3, Part B Continuous Probability Distributions n Uniform Probability Distribution n Normal Probability Distribution n Exponential Probability Distribution f ( x ) x x Uniform x Normal x x Exponential

7 7 Slide © 2004 Thomson/South-Western Normal Probability Distribution n The normal probability distribution is the most important distribution for describing a continuous random variable. n It is widely used in statistical inference.

8 8 Slide © 2004 Thomson/South-Western Heights of people Heights Normal Probability Distribution n It has been used in a wide variety of applications: Scientific measurements measurementsScientific

9 9 Slide © 2004 Thomson/South-Western The distribution is symmetric, and is bell-shaped. The distribution is symmetric, and is bell-shaped. Normal Probability Distribution n Characteristics x

10 Slide © 2004 Thomson/South-Western The entire family of normal probability The entire family of normal probability distributions is defined by its mean  and its distributions is defined by its mean  and its standard deviation . standard deviation . The entire family of normal probability The entire family of normal probability distributions is defined by its mean  and its distributions is defined by its mean  and its standard deviation . standard deviation . Normal Probability Distribution n Characteristics Standard Deviation  Mean  x

11 Slide © 2004 Thomson/South-Western The highest point on the normal curve is at the The highest point on the normal curve is at the mean, which is also the median and mode. mean, which is also the median and mode. The highest point on the normal curve is at the The highest point on the normal curve is at the mean, which is also the median and mode. mean, which is also the median and mode. Normal Probability Distribution n Characteristics x

12 Slide © 2004 Thomson/South-Western Normal Probability Distribution n Characteristics  = 15  = 25 The standard deviation determines the width of the curve: larger values result in wider, flatter curves. The standard deviation determines the width of the curve: larger values result in wider, flatter curves. x

13 Slide © 2004 Thomson/South-Western Probabilities for the normal random variable are Probabilities for the normal random variable are given by areas under the curve. The total area given by areas under the curve. The total area under the curve is 1 (.5 to the left of the mean and under the curve is 1 (.5 to the left of the mean and.5 to the right)..5 to the right). Probabilities for the normal random variable are Probabilities for the normal random variable are given by areas under the curve. The total area given by areas under the curve. The total area under the curve is 1 (.5 to the left of the mean and under the curve is 1 (.5 to the left of the mean and.5 to the right)..5 to the right). Normal Probability Distribution n Characteristics.5.5 x

14 Slide © 2004 Thomson/South-Western Normal Probability Distribution n Characteristics of values of a normal random variable of values of a normal random variable are within of its mean. are within of its mean. of values of a normal random variable of values of a normal random variable are within of its mean. are within of its mean.68.26%68.26% +/- 1 standard deviation of values of a normal random variable of values of a normal random variable are within of its mean. are within of its mean. of values of a normal random variable of values of a normal random variable are within of its mean. are within of its mean %95.44% +/- 2 standard deviations of values of a normal random variable of values of a normal random variable are within of its mean. are within of its mean. of values of a normal random variable of values of a normal random variable are within of its mean. are within of its mean.99.72%99.72% +/- 3 standard deviations

15 Slide © 2004 Thomson/South-Western Normal Probability Distribution n Characteristics x  – 3   – 1   – 2   + 1   + 2   + 3  68.26% 95.44% 99.72%

16 Slide © 2004 Thomson/South-Western  0 z The letter z is used to designate the standard The letter z is used to designate the standard normal random variable. normal random variable. The letter z is used to designate the standard The letter z is used to designate the standard normal random variable. normal random variable. Standard Normal Probability Distribution

17 Slide © 2004 Thomson/South-Western n Converting to the Standard Normal Distribution Standard Normal Probability Distribution We can think of z as a measure of the number of standard deviations x is from .

18 Slide © 2004 Thomson/South-Western n Probability Table for the Standard Normal Distribution Example: Pep Zone Pep Zone 5w-20 Motor Oil P (0 < z <.83)

19 Slide © 2004 Thomson/South-Western Exponential Probability Distribution n The exponential probability distribution is useful in describing the time it takes to complete a task. n The exponential random variables can be used to describe: Time between vehicle arrivals at a toll booth Time between vehicle arrivals at a toll booth Time required to complete a questionnaire Time required to complete a questionnaire Distance between major defects in a highway Distance between major defects in a highway SLOW

20 Slide © 2004 Thomson/South-Western Relationship between the Poisson and Exponential Distributions The Poisson distribution provides an appropriate description of the number of occurrences per interval The Poisson distribution provides an appropriate description of the number of occurrences per interval The exponential distribution provides an appropriate description of the length of the interval between occurrences The exponential distribution provides an appropriate description of the length of the interval between occurrences