Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid.

Slides:



Advertisements
Similar presentations
Take-home postcard. Basis set: Atomic orbitals s p d f SIESTA: Strictly localized (zero beyond cut-off radius)
Advertisements

R. DOSIL, X. M. PARDO, A. MOSQUERA, D. CABELLO Grupo de Visión Artificial Departamento de Electrónica e Computación Universidade de Santiago de Compostela.
PARATEC and the Generation of the Empty States (Starting point for GW/BSE) Andrew Canning Computational Research Division, LBNL and Chemical Engineering.
Pseudopotentials and Basis Sets
Sohrab Ismail-Beigi Applied Physics, Physics, Materials Science Yale University Describing exited electrons: what, why, how, and what it has to do with.
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
CCP6 Conference on Computational Physics, Gyeongju, Republic of Korea, August 2006 Order-N DFT calculations with the Conquest code Michael J. Gillan 1,2,
Transport Calculations with TranSIESTA
Javier Junquera Atomic orbitals of finite range as basis sets.
Computational Modeling Capabilities for Neutral Gas Injection Wayne Scales and Joseph Wang Virginia Tech Center for Space Science and Engineering.
Lattice regularized diffusion Monte Carlo
Stability of RVB state with respect to charge modulations Rastko Sknepnek Iowa State University and DOE Ames Lab In collaboration with: Jun Liu and Joerg.
Ab Initio Total-Energy Calculations for Extremely Large Systems: Application to the Takayanagi Reconstruction of Si(111) Phys. Rev. Lett., Vol. 68, Number.
Temperature Simulations of Magnetism in Iron R.E. Cohen and S. Pella Carnegie Institution of Washington Methods LAPW:  Spin polarized DFT (collinear)
Efficient factorization of van der Waals DFT functional Guillermo Roman and Jose M. Soler Departamento de Física de la Materia Condensada Universidad Autónoma.
How to optimize automatically the parameters that determine the quality of the basis Javier Junquera Alberto García.
Large-Scale Density Functional Calculations James E. Raynolds, College of Nanoscale Science and Engineering Lenore R. Mullin, College of Computing and.
GGAs: A History P Briddon. Thomas Fermi First attempt to write E[n]. First attempt to write E[n]. An early DFT. An early DFT. Issue with KE: Used n 5/3.
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
Introduction to run Siesta
Eigenvalue Problems Solving linear systems Ax = b is one part of numerical linear algebra, and involves manipulating the rows of a matrix. The second main.
Advanced Computer Graphics Spring 2014 K. H. Ko School of Mechatronics Gwangju Institute of Science and Technology.
ATK 方法的扩展及其应用 王雪峰 苏州大学物理系 ZJNU-JinHua.
Numerical Integration in DFT Patrick Tamukong The Kilina Group Chemistry & Biochemistry, NDSU.
Algorithms for Total Energy and Forces in Condensed-Matter DFT codes
Norm-conserving pseudopotentials and basis sets in electronic structure calculations Javier Junquera Universidad de Cantabria.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Introduction to input & output files
Order(N) methods in QMC Dario Alfè 2007 Summer School on Computational Materials Science Quantum Monte Carlo: From Minerals and Materials.
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
Algorithms for a large sparse nonlinear eigenvalue problem Yusaku Yamamoto Dept. of Computational Science & Engineering Nagoya University.
1st Summer School in Theoretical and Computational Chemistry of Catalonia July 25-29, 2007 Directors: Feliu Maseras and Pere Alemany.
Calculation of matrix elements José M. Soler Universidad Autónoma de Madrid.
Introduction to run Siesta Javier Junquera Université de Liège.
Basic introduction to running Siesta Eduardo Anglada Siesta foundation-UAM-Nanotec
Université de Liège Numerical Atomic Orbitals: An efficient basis for Order-N ab-initio simulations Javier Junquera.
How to run SIESTA Víctor García Suárez (thanks to J. Junquera and J. Ferrer)
Linear Systems Iterative Solutions CSE 541 Roger Crawfis.
Feb 23, 2010, Tsukuba-Edinburgh Computational Science Workshop, Edinburgh Large-Scale Density-Functional calculations for nano-meter size Si materials.
One-sided Communication Implementation in FMO Method J. Maki, Y. Inadomi, T. Takami, R. Susukita †, H. Honda, J. Ooba, T. Kobayashi, R. Nogita, K. Inoue.
Development of a full-potential self- consistent NMTO method and code Yoshiro Nohara and Ole Krogh Andersen.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
TBPW: A Modular Framework for Pedagogical Electronic Structure Codes Todd D. Beaudet, Dyutiman Das, Nichols A. Romero, William D. Mattson, Jeongnim Kim.
A Method to Rapidly Predict the Injection Rate in Dye Sensitized Solar Cells. Daniel R. Jones and Alessandro Troisi Department of Chemistry and Centre.
Density Functional Theory Richard M. Martin University of Illinois
Comp. Mat. Science School Linear Scaling ‘Order-N’ Methods in Electronic Structure Theory Richard M. Martin University of Illinois Acknowledgements:
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
Optimization of Numerical Atomic Orbitals
Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)
Thomas Halverson and Bill Poirier Texas Tech University Department of Physics
Physics “Advanced Electronic Structure”
Linear scaling electronic structure methods in chemistry and physics Computing in Science & Engineering, vol. 5, issue 4, 2003 (1) Stefan Goedecker, Gustavo.
N. Schunck(1,2,3) and J. L. Egido(3)
Introduction to the SIESTA method SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Some technicalities.
How do you build a good Hamiltonian for CEID? Andrew Horsfield, Lorenzo Stella, Andrew Fisher.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments Eigenvectors and eigenvalues of a matrix.
Tutorial: Quantum Dynamics of Four- Atom Reactions within the Real Wave Packet Framework Stephen Gray Chemistry Division Argonne National Laboratory Argonne,
Determination of surface structure of Si-rich SiC(001)(3x2) Results for the two-adlayer asymmetric dimer model (TAADM) are the only ones that agree with.
Linear Scaling Quantum Chemistry Richard P. Muller 1, Bob Ward 2, and William A. Goddard, III 1 1 Materials and Process Simulation Center California Institute.
© copyright 2011 William A. Goddard III, all rights reservedCh121a-Goddard-L14 Periodic Boundary Methods and Applications: Ab-initio Quantum Mechanics.
©2011, Jordan, Schmidt & Kable Lecture 13 Lecture 13 Self-consistent field theory This is how we do it.
Spin transport at the atomic scale Alexandre Reily Rocha and Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin,
The Siesta program for electronic structure simulations
Atomic orbitals of finite range
Introduction to Tight-Binding
Linear scaling solvers based on Wannier-like functions
ATOMIC STRUCTURE Central cell of the Al-SiO2-nSi atomic structure. This cell is connected to Al atomic planes extending to to the left, and n-Si atomic.
Parallelization of CPAIMD using Charm++
Presentation transcript:

Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid

Linear scaling = Order(N) N (# atoms) CPU load ~ 100 Early 90’s ~ N 3

Order-N DFT 1.Find density and hamiltonian (80% of code) 2.Find “eigenvectors” and energy (20% of code) 3.Iterate SCF loop Steps 1 and 3 spared in tight-binding schemes

DFT: successful but heavy 3 Computational load ~ N Computationally much more expensive than empirical atomic simulations Several hundred atoms in massively parallel supercomputers

Key to O(N): locality ``Divide and conquer’’ W. Yang, Phys. Rev. Lett. 66, 1438 (1992) ``Nearsightedness’’ W. Kohn, Phys. Rev. Lett. 76, 3168 (1996) Large system

Basis sets for linear-scaling DFT LCAO: - Gaussian based + QC machinery G. Scuseria (GAUSSIAN), M. Head-Gordon (Q-CHEM) - Numerical atomic orbitals (NAO) SIESTA S. Kenny &. A Horsfield (PLATO) - Gaussian with hybrid machinery J. Hutter, M. Parrinello Bessel functions in ovelapping spheres P. Haynes & M. Payne B-splines in 3D grid D. Bowler & M. Gillan Finite-differences (nearly O(N)) J. Bernholc

Divide and conquer buffer central buffer b c b x x’ central buffer Weitao Yang (1992)

Fermi operator/projector Goedecker & Colombo (1994) f(E) = 1/(1+e E/kT )   n c n E n F   c n H n E tot = Tr[ F H ] ^^ ^ E min E F E max 1 0

Density matrix functional    Li, Nunes & Vanderbilt (1993)   = 3  2  - 2  3  E tot (   ) =     H  = min  

Wannier O(N) functional Mauri, Galli & Car, PRB 47, 9973 (1993) Ordejon et al, PRB 48, (1993) S ij = |  ’ k > =  j |  j > S jk -1/2 E KS =  k =  ijk S ki -1/2 S jk -1/2 = Tr[ S -1 H ] Kohn-Sham E O(N) = Tr[ (2I-S) H ] Order-N ^ ^

Order-N vs KS functionals O(N) KS Non-orthogonality penalty S ij =  ij  E O(N) = E KS

Chemical potential Kim, Mauri & Galli, PRB 52, 1640 (1995)  (r) = 2  ij  i (r) (2  ij -S ij )  j (r) E O(N) = Tr[ (2I-S) H ] # states = # electron pairs  Local minima E KMG = Tr[ (2I-S) (H-  S) ] # states > # electron pairs  = chemical potential (Fermi energy) E i <   |  i |  0 E i >   |  i |  1 Difficulties Solutions Stability of N(  ) Initial diagonalization First minimization of E KMG Reuse previous solutions

Orbital localization  ii RcRc rcrc  i (r) =   c i    (r)

Convergence with localisation radius R c (Ang) Relative Error (%) Si supercell, 512 atoms

Sparse vectors and matrices xi yi 8.29  1.85 =  0 =  0 = Sum x Restore to zero x i  0 only

Actual linear scaling Single Pentium III 800 MHz. 1 Gb RAM c-Si supercells, single-  atoms in 64 nodes