RHIC – PHENIX 実験における単電子の測定 Single Electron Measurement at RHIC – PHENIX T. Hachiya Hiroshima Univ. For the PHENIX collaboration.

Slides:



Advertisements
Similar presentations
Heavy flavor production in STAR. What can charm and beauty tell us about matter in heavy ion collisions? Manuel Calderón de la Barca Sánchez UC Davis for.
Advertisements

Measurement of elliptic flow of electrons from heavy flavor RHIC Shingo Sakai (Univ. of Tsukuba / JSPS)
Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurements by Weak-Decayed Electrons at RHIC-PHENIX.
Charm & bottom RHIC Shingo Sakai Univ. of California, Los Angeles 1.
Measurement of charmonia at mid-rapidity at RHIC-PHENIX  c  J/   e + e -  in p+p collisions at √s=200GeV Susumu Oda CNS, University of Tokyo For.
Di-electron Continuum at PHENIX Yorito Yamaguchi for the PHENIX collaboration CNS, University of Tokyo Rencontres de Moriond - QCD and High Energy Interactions.
09/30/'06SPIN2006, T. Horaguchi1 Measurement of the direct photon production in polarized proton-proton collisions at  s= 200GeV with PHENIX CNS, University.
10/03/'06 SPIN2006, T. Horaguchi 1 Measurement of the direct photon production in polarized proton-proton collisions at  s= 200GeV with PHENIX CNS, University.
The Azimuthal Anisotropy of Electrons from Heavy Flavor Decays in √s NN =200 GeV Au-Au Collisions at PHENIX Shingo Sakai for PHENIX Collaborations (Univ.
Cold Nuclear Matter Effects on Open Heavy Flavor at RHIC J. Matthew Durham for the PHENIX Collaboration Stony Brook University
Direct-Photon Production in PHENIX Oliver Zaudtke for the Collaboration Winter Workshop on Nuclear Dynamics 2006.
Non-photonic electron production in STAR A. G. Knospe Yale University 9 April 2008.
SQM2006, 03/27/2006Haibin Zhang1 Heavy Flavor Measurements at STAR Haibin Zhang Brookhaven National Laboratory for the STAR Collaboration.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
Recent measurements of open heavy flavor production by PHENIX Irakli Garishvili, Lawrence Livermore National Laboratory PHENIX collaboration  Heavy quarks.
Xiaoyan LinQuark Matter 2006, Shanghai, Nov , Study B and D Contributions to Non- photonic Electrons via Azimuthal Correlations between Non-
Feb High-pT Physics at Prague1 T. Horaguchi Hiroshima University Feb. 4 for the 4 th International Workshop.
PHENIX Fig1. Phase diagram Subtracted background Subtracted background Red point : foreground Blue point : background Low-mass vector mesons (ω,ρ,φ) ~
QM2006 Shanghai, China 1 High-p T Identified Hadron Production in Au+Au and Cu+Cu Collisions at RHIC-PHENIX Masahiro Konno (Univ. of Tsukuba) for the PHENIX.
Single Electron Measurements at RHIC-PHENIX T. Hachiya Hiroshima University For the PHENIX Collaboration.
D 0 Measurement in Cu+Cu Collisions at √s=200GeV at STAR using the Silicon Inner Tracker (SVT+SSD) Sarah LaPointe Wayne State University For the STAR Collaboration.
Observation of W decay in 500GeV p+p collisions at RHIC Kensuke Okada for the PHENIX collaboration Lake Louise Winter Institute February 20, /20/20101.
Ralf Averbeck State University of New York at Stony Brook INT/RHIC Winter Workshop, Seattle, December 13-15, 2002 Lepton and Charm Measurements in the.
R CP Measurement with Hadron Decay Muons in Au+Au Collisions at √s NN =200 GeV WooJin Park Korea University For the PHENIX Collaboration.
Open heavy flavor measurements at PHENIX Y. Akiba (RIKEN) for PHENIX Nov. 2, 2007 LBNL Heavy Quark Workshop.
Heavy flavor production at RHIC Yonsei Univ. Y. Kwon.
Electron and identified hadron v 2 to look for hadronic or partonic origin of elliptic flow Shingo Sakai for the PHENIX Collaboration Univ. of Tsukuba.
Recent Charm Measurements through Hadronic Decay Channels with STAR at RHIC in 200 GeV Cu+Cu Collisions Stephen Baumgart for the STAR Collaboration, Yale.
Charm and J/PSI measurement at RHIC Y. Akiba (KEK) August 9, 2002 Riken Summer study 2002.
Measurement of Inclusive Photon in Au+Au collisions by Conversion Method at RHIC-PHENIX T. Hachiya, Hiroshima Univ., for the PHENIX collaboration.
Higher harmonics flow measurement of charged hadrons and electrons in wide kinematic range with PHENIX VTX tracker Maki KUROSAWA for PHENIX collaboration.
Xiaoyan LinHard Probes 2006, Asilomar, June Azimuthal correlations between non-photonic electrons and charged hadrons in p+p collisions from STAR.
Measurements of thermal photons in heavy ion collisions with PHENIX - Torsten Dahms - Stony Brook University February 8 th, 2008 Real photons at low p.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
2004 Fall JPS meeting (English version) K.Okada1 Measurement of prompt photon in sqrt(s)=200GeV pp collisions Kensuke Okada (RIKEN-BNL research center)
Measurement of photons via conversion pairs with PHENIX at RHIC - Torsten Dahms - Stony Brook University HotQuarks 2006 – May 18, 2006.
27 Mar 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 61th Annual Meeting.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
Non-photonic electron production in p+p collisions at √s=200 GeV Xiaozhi Bai for the STAR collaboration Central China Normal University University of Illinois.
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
Study of b quark contributions to non-photonic electron yields by azimuthal angular correlations between non-photonic electrons and hadrons Shingo Sakai.
PHENIX Heavy Flavor Measurement by Single Leptons in p+p, d+Au and Au+Au Fukutaro Kajihara CNS, University of Tokyo For the PHENIX Collaboration Heavy.
JPS/DNPY. Akiba Single Electron Spectra from Au+Au collisions at RHIC Y. Akiba (KEK) for PHENIX Collaboration.
Feasibility study of Heavy Flavor tagging with charged kaons in Au-Au Collisions at √s=200 GeV triggered by High Transverse Momentum Electrons. E.Kistenev,
Heavy Flavor Workshop, Beijing, China, ShinIchi Esumi, Univ. of Tsukuba1 Heavy flavor collective flow measurements at RHIC ShinIchi Esumi Univ.
単電子および電子対測定の 物理、現状、展望 蜂谷 崇 広島大学 /PHENIX collaboration.
D.Arkhipkin, Y. Zoulkarneeva, Workshop of European Research Group on Ultra relativistic Heavy Ion Physics March 9 th 2006 Transverse momentum and centrality.
Elliptic flow of electrons from heavy flavor decays
1 Measurement of Heavy Quark production at RHIC-PHENIX Yuhei Morino CNS, University of Tokyo.
1 Measurements of Leptonic and Photonic Probes in Au+Au Collisions at PHENIX Run-2 Takashi Matsumoto for the PHENIX collaboration at RHIC & AGS Annual.
Outline Motivation The STAR/EMC detector Analysis procedure Results Final remarks.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
1 Prompt Photon Production from Proton - proton Collisions at √s = 62.4 GeV in PHENIX ( PHENIX 実験における重心系 62.4 GeV での陽子 - 陽子衝突からの 直接光子の生成断面積の測定 ) JPS meeting.
Measurement of photons via conversion pairs with the PHENIX experiment at RHIC - Torsten Dahms - Master of Arts – Thesis Defense Stony Brook University.
Elliptic flow of electron from heavy flavor decay by the PHENIX Shingo Sakai for PHENIX collaboration (Univ. of Tsukuba & JPSP)
DNP/JPS 1 The azimuthal anisotropy of electrons from heavy flavor decays in √S NN = 200 GeV Au- Au collisions by PHENIX Shingo Sakai for the PHENIX collaborations.
An Tai QM2004, Oakland Jan.11-17, 2004 STAR 1 STAR measurements of open charm production in dAu collisions at √s NN =200 GeV An Tai For the STAR Collaboration.
PHENIX J/  Measurements at  s = 200A GeV Wei Xie UC. RiverSide For PHENIX Collaboration.
Measurements of low pT direct photons in PHENIX Yorito Yamaguchi for the PHENIX collaboration CNS, University of Tokyo 04/11/2008WWND South Padre.
Fall DNP Meeting,  meson production in Au-Au and d-Au collision at \ /s NN = 200 GeV Dipali Pal Vanderbilt University (for the PHENIX collaboration)
Tatia Engelmore, Columbia University
Maya SHIMOMURA University of Tsukuba for the PHENIX Collaboration
坂井 真吾 for the PHENIX Collaboration Shingo Sakai   Univ. of Tsukuba
PHENIX measurement on direct photon production
The Study of Elliptic Flow for PID Hadron at RHIC-PHENIX
High-pT Identified Charged Hadrons in √sNN = 200 GeV Au+Au Collisions
Identified Charged Hadron Production at High pT
Shingo Sakai for PHENIX Collaborations (Univ. of Tsukuba)
Shingo Sakai for PHENIX Collaborations (Univ. of Tsukuba)
Azimuthal anisotropy of electrons in Au+Au collisions at √SNN=200GeV/c measured with PHENIX at RHIC Shingo Sakai for PHENIX collaboration Univ. of Tsukuba.
Presentation transcript:

RHIC – PHENIX 実験における単電子の測定 Single Electron Measurement at RHIC – PHENIX T. Hachiya Hiroshima Univ. For the PHENIX collaboration

2003/9/11JPS meeting at Miyazaki2 Motivation Charm is produced through mainly gluon-gluon fusion in heavy ion collisions Sensitive to gluon density in initial stage of the collisions Charm propagate through hot and dense medium created in the collisions Energy loss of charms via gluon radiation can be seen. (PHENIX observed high pT suppressions in hadron measurements) Charm measurements bring us an important baseline of J/  measurement Charm Measurement Measure leptons from semi-leptonic decay of charm.

2003/9/11JPS meeting at Miyazaki3 Electron Measurement All charged tracks BG Net e ± e ± real. Electrons are measured by DC → PC1 → RICH → EMCal Electron Identification :  Cherenkov light in RICH Number of Hit PMT Ring shape  Energy – Momentum matching e+ EM Calorimeter PC2 Mirror PC3 RICH PC1 DC X Cherenkov light in RICH

2003/9/11JPS meeting at Miyazaki4 Photon Converter Method Source of Electrons Photonic source Photon conversion, Dalitz decay … Non-photonic source Charm and Beauty decay Photon Converter  1.7 % radiation length (brass)  The converter can increase electrons only from photonic source by a fixed factor  By comparing the data W and W/O the converter, electrons from non- photonic and photonic source can be separated.  Difficulty  Need to adjust acceptance between real data and simulation.  Amount of material in simulation need to be same with that in real data. Photon Converter e+e+ e-e-

2003/9/11JPS meeting at Miyazaki5 Comparison of Conv/No Conv Ratio in Real Data and Simulation If there is no non-photonic source, real data should agree with simulation. The ratio in simulation looks gradually increasing. It is different with that in real data.  Existence of non-photonic source. Different amount of material between real data and simulation is studied. (explained in next page) Real data Sim Sim + 4.3 % Sim – 4.3 % pT of e[GeV/c] Ratio of p T in Real Data and Simulation

2003/9/11JPS meeting at Miyazaki6 Comparison of Amount of Material in Real data and Simulation Assumption : thickness of the converter in simulation is same that in real data. Mee distribution is normalized by Nevent. Calculate the Ratio( R M ) of Mee(inner) and Mee(converter) Then, compare R M in real data and simulation. Difference between real data and simulation is 0.8%  4.3%. N Converter : Mee:60-100[MeV] N Inner : Mee:0-40[MeV] Mee in simulation Mee[GeV] Mee in real data Mee[GeV] Mee in conv. Run Mee in no-conv. run Conclusion:

2003/9/11JPS meeting at Miyazaki7 Separate Non-Photonic and Photonic Electrons Raw pT distribution of both photonic and non-photonic electrons are obtained by following method (converter subtraction). pT[GeV/c ] Raw pT distributions Inclusive e Non-Photonic e Photonic e Ratio of p T in Real Data and Simulation

2003/9/11JPS meeting at Miyazaki8 Corrected Pt spectra of non-photonic electrons Nevents: 2.5M in no conv. Run 2.2M in conv. run Present analysis is consistent with QM02 Preliminary result within errors. Systematic error is much reduced. QM02 : PHENIX PRELIMINALY Current Analysis: Work in Progress  s NN = 200GeV, Min. Bias

2003/9/11JPS meeting at Miyazaki % p T [GeV/c] 1/2  p T · dN/dydp T Min. Bias 0-10% 20-40% 40-60% 60-92% 10-20% Centrality Dependence of Non-Photonic Electrons PYTHIA calculation is scaled with number of binary collisions. Well described for all centralities. Work in Progress Data Charm Beauty Combined

2003/9/11JPS meeting at Miyazaki10 Summary Conversion subtraction method is refined Difference of amount of material in real and simulation is 0.8%  4.3% Systematic error is much reduced. Corrected pT spectra of non-photonic electrons are measured in Au+Au collision at  s NN = 200GeV. The Spectra are compared with PYTHIA calculation. Consistent with electrons from charm and beauty decay. Described by binary scaling. Electron measurement by the converter method is very close to final -> Next meeting. Next Step Eta and Kaon should be taken into account. The other method to measure high pT region.