Superconducting properties in filled-skutterudite PrOs4Sb12

Slides:



Advertisements
Similar presentations
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Advertisements

Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Superconductivity in Diamond
Magnetic Properties. Introduction Magnetism arises from the Magnetic Moment or Magnetic dipole of Magnetic Materials. When the electrons revolves around.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Kitaoka lab Itohara Keita
ISCOM2009 International symposium on crystalline organic metals, superconductors, ferromagnets announcement At Niseko in Hokkaido, Japan On Sep. 12 – 17,
Recent NMR Results in NCKU C. S. Lue ( 呂欽山 ) Department of Physics, National Cheng Kung University ( 國立成功大學物理系 )
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Semiconductors n D*n If T>0
The Three Hallmarks of Superconductivity
Coherent Kondo State in a Dense Kondo Substance : Ce x La 1-x Cu 6 A.Sumiyama et al., J.Phys.Soc.Jpn.55(1986) Shimizu-group Katsuya TOKUOKA.
High Temperature Copper Oxide Superconductors: Properties, Theory and Applications in Society Presented by Thomas Hines in partial fulfillment of Physics.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
Thin Films for Superconducting Cavities HZB. Outline Introduction to Superconducting Cavities The Quadrupole Resonator Commissioning Outlook 2.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Electron Spin Resonance Spectroscopy
Investigations in Superconductivity Lulu Liu Partner: Chris Chronopoulos 8.14 Experiment 4 May 12, 2008.
Terahertz spectroscopy of electromagnons in Multiferroics
Magnetic transition in the Kondo lattice system CeRhSn2
Determination of Spin-Lattice Relaxation Time using 13C NMR
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
How does Superconductivity Work? Thomas A. Maier.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) Superconductivity in MNX type compounds ( TiNCl ) Superconducting Nitride Halides (MNX),
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
NMR study on bismuth oxide superconductor BaPb x Bi 1-x O 3 H. Matsuura and K. Miyake, J. Phys. Soc. Jpn. 81 (2012) Kitaoka Lab. Takashi MATSUMURA.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Michael Browne 11/26/2007.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Introduction to Neutron Scattering Jason T. Haraldsen Advanced Solid State II 2/27/2007.
History of superconductivity
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond
Thermal phase transitions in realistic dense quark matter
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Pressure Dependence of Superconductivity of Iron Chalcogenides
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
SUPERCONDUCTORS mobile electrons in conducting material move through lattice of atoms or ions that vibrate (thermal motion) when conductor is cooled down.
Chapter 7 in the textbook Introduction and Survey Current density:
Superconductivity Basics
Superconductivity and Superfluidity The Microscopic Origins of Superconductivity The story so far -what do we know about superconductors?: (i) Superconductors.
NMR study of 133Cs in a new quasi-one-dimensional conducting platinate
Electrical Properties of Materials
Zeeman effect HFS and isotope shift
75As NQR Studies on LaFeAsO1-y and NdFeAsO0.6
Multielectron Atoms The quantum mechanics approach for treating multielectrom atoms is one of successive approximations The first approximation is to treat.
Hiroyuki Nojiri, Department of Physics, Okayama University
Addition of Angular Momentum
Presentation transcript:

Superconducting properties in filled-skutterudite PrOs4Sb12 I’ll talk about Superconducting properties in filled-skutterudite PrOs4Sb12. I’m member of Kitaoka laboratory. Kitaoka Lab. M1  Takayuki Nagai references ・H.Kotegawa et al,Phys.Rev.Lett. 90,027001 (2003) ・M.Yogi et al,Phys.Rev. B 67,180501(R) (2003) Filled-skutterudite : 充填スクッテルダイト

・Filled-skutterudite compounds show rich properties Abstract abstract ・Filled-skutterudite compounds show rich properties metal-insulator transition, heavy fermion behavior,and superconductivity etc. (LaOs4Sb12,PrOs4Sb12, PrRu4Sb12 etc.) ・PrOs4Sb12 shows heavy-fermion-like behavior and anomalous superconductivity in many experiments. ・The related compounds, LaOs4Sb12 ,LaRu4Sb12 and PrRu4Sb12 have been reported as conventional BCS superconductors. 充填スクッテルダイト構造を持つ化合物は、試料依存性が強く、様々な性質が確認されていて、これらのうち、超伝導転移を起こすものとして、LaOs4Sb12やPrOs4Sb12などが確認されている。PrOs4Sb12は、様々な測定結果から、重い電子系の化合物の振る舞いを示し、従来の超伝導体として説明することができない特異な振る舞いが見られることが報告されている。一方、 LaOs4Sb12とLaRu4Sb12,PrRu4Sb12は、典型的なBCS超伝導体である。今回は、これらのBCS超伝導体とPrOs4Sb12の比較を行い、その変わった振る舞いをお見せします。 Metal-insulator transition : 金属-絶縁体転移 Heavy-fermion (HF) compound : 重い電子系化合物

- Filled-skutterudite structure - Crystal electric field Outline Outline Introduction - Filled-skutterudite structure - Crystal electric field - Nuclear Quadrupole Resonance technique Experiments Summary アウトラインはこのようになっています。 イントロで充填スクッテルダイト化合物の基本的な情報と結晶場、四重極相互作用の説明をし、次に実験結果をお見せします。

Introduction : Filled-skutterudite / Crystal structure Thermoelectric effect Crystal structure Lower temperature Higher temperature Application ・refrigerator ・waste heat recovery etc. 充填スクッテルダイトの結晶構造はこのようになっています。12個のプニクトゲンからなるカゴが特徴的です。 白丸はプニクトゲン元素、青丸は鉄やルテニウム、オスミウムなど、そして、赤丸が希土類元素を表しています。 この化合物は、初めのころは、熱電素子として、電圧をかけることで試料に温度勾配ができる効果を使った冷蔵庫、そしてその逆方向の効果を使った廃熱利用への応用が期待されていましたが、最近になって、それ以外にも、金属-絶縁体転移や重い電子状態、超伝導転移を示す化合物が発見され、注目されてきました。 Filled-skutterudite compounds show rich properties. ・metal-insulator transition ・heavy-fermion (HF) behavior ・superconducting (SC) transition rare earth transition metal pnictogen The cage made by a rare earth atom and 12 pnictogen atoms forms bcc-type crystal lattice Thermoelectric effect      : 熱電効果

Introduction : Crystal electric field PrOs4Sb12 Crystal electric field effect L-S coupling J=6 (13) (111K , doublet) Pr3+-4f2 J=5 (11) 次に結晶場について説明します。 結晶場効果というのは、f電子と関係していて、原子核と波動関数の形に関係して、電子状態が分裂することを言います。 例えば、PrOs4Sb12において、Prが持っている2つのf電子の状態は、まずL-S結合によって3つの状態に分かれ、それぞれの状態がさらに結晶場によって分裂します。ここで興味深いのはJ=4からわかれた状態のうち、非磁性の基底状態と磁性を持つ第一励起状態の間のエネルギー差が6Kと非常に小さいことで、この2つの状態の間で電子がふらふらしていて、磁気揺らぎがあることが確認されています。 (65K , triplet) Crystal electric field : 結晶場 Interaction between electrons and ions. J=4 (9) (6K , triplet) magnetic (0K , singlet) L-S coupling : スピン-軌道相互作用 : orbital angular momentum : spin angular momentum non-magnetic Very small split → Magnetic fluctuations Magnetic fluctuation : 磁気揺らぎ T.Hotta et al,Phys. Rev.Letter. 94 (2005) 067003

Introduction : Filled-skutterudite compounds Introduction : Filled-skutterudite compounds / PrOs4Sb12 Introduction : Filled-skutterudite compounds PrOs4Sb12 ・zero resistivity ・Meissner effect ・Jump of specific heat ・ First Pr-based heavy-fermion superconductor これらのグラフはPrOs4Sb12のバルクの状態を調べたものです。 上からそれぞれ電気抵抗、帯磁率、比熱の温度依存性を示しています。 グラフによると、転移温度である1.85K付近で電気抵抗が消失し、マイスナー効果や超伝導転移に伴う比熱のとびも現れていることがわかります。ここで、比熱に注目してみると、比熱のとびの大きさから、重い電子系の化合物であることを示唆しています。また、6K付近から比熱の上昇が見られ、これは結晶場により基底状態と第一励起状態の間に6Kのエネルギー差があることによるショットキー比熱に対応しています。 右下の図はその他の超伝導体の転移温度を示したものです。それぞれ1.3K,0.7K,3.58Kです。 Laの場合、OsもRuもBCS超伝導状態ですが、興味深いのはPrの場合で、後で述べるようにOsとRuで機構が違っています。 PrOs4Sb12 LaRu4Sb12 LaOs4Sb12 PrRu4Sb12 ? BCS TC=1.85K TC=3.58K TC=0.74K TC=1.3K E.D.Bauer et al,Phys. Rev. B 65 (2002) 100506

Introduction : Nuclear Quadrupole Resonance + Charge distribution is not spherical symmetry. Natural abundance 121Sb 57.3% , 123Sb 42.7 続いて核四重極共鳴についてお話します。 原子核の電荷分布が球対称でない場合、その周りの電荷がつくる電場の勾配との相互作用によって、図のように電子状態が分裂します。図はI=3/2の場合の核四重極相互作用を示しています。 下の図はSbのNQRを示したものです。Sbは121Sbと123Sbの同位体の元素を持っています。 121SbはI=5/2で状態が3つに分裂し, 123SbはI=7/2で4つに分裂します。したがって、あわせて5つの遷移が起こります。実際の実験結果はグラフの通りです。 Sb-NQR spectrum of PrOs4Sb12 121Sb (123Sb) has 2 (3) NQR transitions. ・121Sb (I=5/2) νQ 2νQ ・123Sb (I=7/2) 3νQ Nuclear Quadrupole Resonance : 核四重極共鳴

Experiments : Nuclear spin-lattice relaxation Energy Nuclear spin-lattice relaxation 核スピン-格子緩和

Experiments : Nuclear spin-lattice relaxation BCS superconductor : LaOs4Sb12 Normal state La

Experiments : Nuclear spin-lattice relaxation BCS superconductor : LaOs4Sb12 SC state TC Coherence peak NMR can detect low energy excitation around the Fermi surface.

Experiments :Gap structure of anisotropic rsuperconductor Experiments: Gap structure of anisotropic superconductors Experiments :Gap structure of anisotropic rsuperconductor Observed in HF superconductors. Line-node Gap equation 1/T1∝T3 TC ギャップ構造:典型例も載せる。 Point-node Gap equation 1/T1∝T5 G.-q.Zheng et al,PRL 86 4664(2001) Anisotropic superconductor : 異方的超伝導体

Experiments : Spin-lattice-relaxation time T1 LaOs4Sb12 vs. PrOs4Sb12 LaOs4Sb12 ・Normal State →T1T : const. ・SC State → Coherence peak at TC and Exponential T dependence of 1/T1 Conventional BCS superconductor. LaOs4Sb12 PrOs4Sb12

Experiments : Spin-lattice-relaxation time T1-2 CeCu2Si2 , CeIrIn5 vs. PrOs4Sb12 CeIrIn5 CeCu2Si2 PrOs4Sb12 Y.Kawasaki et al,PRB 66 (2002) 224502 G.-q.Zheng et al,PRL 86 4664(2001) CeCu2Si2 , CeIrIn5 ・SC state 1/T1 is proportional to T3 → anisotropic HF superconductor Isotropic HF superconductor?

Experiments : Spin-lattice-relaxation time T1-3 TC PrRu4Sb12 vs. PrOs4Sb12 PrOs4Sb12 LaOsSbとPrRuSbをひとまとめにする。 PrOsSbは10K付近で幅の広いピークを持つ M.Yogi et al, PRL 90 027001 (2003) T<<70K T>>70K H. Kotegawa et al, PRL 90 027001 (2003) T<<6K T>>6K magnetic TC=1.85K 70K 6K magnetic non-magnetic TC=1.3K : Electrons non-magnetic

Results BCS TC=1.85K TC=1.3K BCS BCS TC=0.74K TC=3.58K Crystal electric field plays an important role. PrOs4Sb12 PrRu4Sb12 PrOs4Sb12 isn’t a conventional BCS superconductor. Isotropic-HF super conductor BCS TC TC=1.85K TC=1.3K LaOs4Sb12 LaRu4Sb12 BCS BCS TC=0.74K TC=3.58K

From temperature dependence of nuclear-spin-relaxation time T1, Summary Summary From temperature dependence of nuclear-spin-relaxation time T1, PrOs4Sb12 is not conventional BCS superconductor but HF-like-isotropic superconductor. Crystal electric field plays an important role in the superconductivity of PrOs4Sb12 . 文章で