Murchison Widefield Array (MWA) : Design and Status Divya Oberoi, Lenoid Benkevitch MIT Haystack Observatory doberoi, On behalf.

Slides:



Advertisements
Similar presentations
Arecibo 40th Anniversary Workshop--R. L. Brown The Arecibo Astrometric/Timing Array Robert L. Brown.
Advertisements

PAPER’s Sweet Sixteen: Imaging the Low Frequency Sky with a Sixteen Element Array Nicole Gugliucci for the PAPER Team* USNC/URSI National Radio Science.
SKAMP - the Molonglo SKA Demonstrator M.J. Kesteven CSIRO ATNF, T. J. Adams, D. Campbell-Wilson, A.J. Green E.M. Sadler University of Sydney, J.D. Bunton,
ASKAP and DVP David DeBoer ASKAP Project Director 15 April 2010 Arlington, VA.
MWA Project:. Site: Murchison Radio Observatory Australia’s proposed SKA Site Strategy: 512 Antenna “Tiles” Explore “Large N / Small D” regime Correlate.
The Murchison Widefield Array: an SKA Precursor Shep Doeleman - MIT Haystack For the MWA Project.
Project status and specifications Douglas Bock Project Manager 1.
Current mm interferometers Sébastien Muller Nordic ARC Onsala Space Observatory Sweden Turku Summer School – June 2009.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array EVLA Observations of.
Paul Alexander Dynamic RangeAAVP 2010 Overview of Calibration and Dynamic Range Challenges Paul Alexander.
Low frequency sky surveys with the Murchison Widefield Array (MWA) Gianni Bernardi Harvard-Smithsonian Center for Astrophysics SKA SA project/MeerKAT observatory.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
J.M. Wrobel - 25 June 2002 PROPOSALS 1 PROPOSAL WRITING TUTORIAL Outline 30 minutes: Lecture on Generic Issues 60 minutes: Small Groups Write Proposals.
Ian McCrea STFC Rutherford Appleton Laboratory Chilton, Oxfordshire, UK On behalf of the EISCAT_3D Project Consortium.
Dale E. Gary Professor, Physics, Center for Solar-Terrestrial Research New Jersey Institute of Technology 1 03/15/2012Preliminary Design Review.
“First Light” From New Probes of the Dark Ages and Reionization Judd D. Bowman (Caltech) Hubble Fellows Symposium 2008.
Ian McCrea STFC Rutherford Appleton Laboratory Chilton, Oxfordshire, UK On behalf of the EISCAT_3D Project Consortium.
2nd LOFAR KSP meeting Potsdam 2009 July Experience of NRH observations: which benefit for LOFAR KSP ? A. Kerdraon Observatoire de Paris - LESIA -
EVLA Early Science: Shared Risk Observing EVLA Advisory Committee Meeting, March 19-20, 2009 Claire Chandler Deputy AD for Science, NM Ops.
Solar observation modes: Commissioning and operational C. Vocks and G. Mann 1. Spectrometer and imaging modes 2. Commissioning proposals 3. Operational.
10 January 2006AAS EVLA Town Hall Meeting1 The EVLA: A North American Partnership The EVLA Project on the Web
Array Configuration Divya Oberoi MIT Haystack Observatory.
The Murchison Wide Field Array Murchison, ~300 km from Geraldton.
Daniel Mitchell (SAO / CfA) For the MWA Consortium.
Polarization at IRAM Status and Plans S.Guilloteau Laboratoire d’Astrophysique de Bordeaux.
Which dipoles to use to optimize survey speed? –What tapering? –Trade-off between sensitivity, FOV and low side-lobe levels –Station beam stability, pointing.
Introduction to the Murchison Widefield Array Project Alan R. Whitney MIT Haystack Observatory.
Introducing the EVLA NRAO Postdoctoral Symposium, 29 April-1 May 2009 Michael P. Rupen Project Scientist for WIDAR.
Judd D. Bowman Arizona State University Alan Rogers MIT/Haystack Observatory May 26, 2011 Experiment to Detect the Global EoR Signature (EDGES)
Correlator Growth Path EVLA Advisory Committee Meeting, March 19-20, 2009 Michael P. Rupen Project Scientist for WIDAR.
26/05/11, Zadar Shallow & deep integrations with the MWA Gianni Bernardi Harvard-Smithsonian Center for Astrophysics (cooperative effort with D. Mitchell,
Mileura Widefield Array – Low Frequency Demonstrator MHz * Currently in “Early Deployment” phase Goal: HI at redshift 6 to 17.
THE MURCHISON WIDEFIELD ARRAY: FROM COMMISSIONING TO OBSERVING D. Oberoi 1,2, I. H. Cairns 3, L. D. Matthews 2 and L. Benkevitch 2 on behalf of the MWA.
Moscow presentation, Sept, 2007 L. Kogan National Radio Astronomy Observatory, Socorro, NM, USA EVLA, ALMA –the most important NRAO projects.
Fundamental limits of radio interferometers: Source parameter estimation Cathryn Trott Randall Wayth Steven Tingay Curtin University International Centre.
Russia_2006 Current STELab IPS Heliospheric Analyses STELab interplanetary scintillation (IPS) 327 MHz array near Fuji IPS and SMEI Observation Comparison.
ASKAP Capabilities John Reynolds on behalf of the SEIC and ASKAP team.
LOFAR LOw Frequency Array => most distant, high redshift Universe !? Consortium of international partners… Dutch ASTRON USA Haystack Observatory (MIT)
Centre of Excellence for All-sky Astrophysics MWA Project: Centre of Excellence for All-sky Astrophysics Centre of Excellence for All-sky.
Answers from the Working Group on AGN and jets G. Moellenbrock, J. Romney, H. Schmitt, V. Altunin, J. Anderson, K. Kellermann, D. Jones, J. Machalski,
Early Science Specification and Expected Array Evolution Masao Saito EA ALMA Project Scientist EA PS Report1 2nd ALMA Users Meeting 2011/1/13.
Observing Strategies at cm wavelengths Making good decisions Jessica Chapman Synthesis Workshop May 2003.
ASKAP: Setting the scene Max Voronkov ASKAP Computing 23 rd August 2010.
The Mission  Explore the Dark Ages through the neutral hydrogen distribution  Constrain the populations of the first stars and first black holes.  Measure.
ASKAP Update David DeBoer ASKAP Project Director 26 May 2010.
Potential of a Low Frequency Array (LOFAR) for Ionospheric and Solar Observations ABSTRACT: The Low Frequency Array (LOFAR) is a proposed large radio telescope.
The Allen Telescope Array Douglas Bock Radio Astronomy Laboratory University of California, Berkeley Socorro, August 23, 2001.
SKA: Configurations and Simulations Ramesh Bhat Colin Lonsdale Roger Cappallo Shep Doeleman Divya Oberoi Joanne Attridge MIT Haystack Observatory.
First Exploration of MWA Deep Field Point Source Population C. Williams - PhD Thesis J. Hewitt – reporting some analysis.
Future Radio Interferometers Jim Ulvestad National Radio Astronomy Observatory.
Solar observations with single LOFAR stations C. Vocks 1. Introduction: Solar Radio radiation 2. Observations with single LOFAR stations 3. Spectrometer.
Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 The scale frontier MT & Zaldarriaga, arXiv:
Upcoming Instruments to Probe Reionization… Frank Briggs ANU.
1 November, 2006 SHI Meeting IPS and Solar Imaging Divya Oberoi MIT Haystack Observatory.
MWA imaging and calibration – early science results
Multi-beaming & Wide Field Surveys
Solar and heliosheric WG
Archive, Data Products, & Operations for the Murchison Widefield Array
AAVS1 Calibration Aperture Array Design & Construction Consortium
EVLA Availability - or - When Can I Use It?
IPS and SMEI Observation Comparison
S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010
Pulsar Timing with ASKAP Simon Johnston ATNF, CSIRO
Atacama Large Millimeter Array
Observational Astronomy
Observational Astronomy
Some Illustrative Use Cases
Prototype Correlator Testing
Correlator Growth Path
Future Radio Interferometers
Presentation transcript:

Murchison Widefield Array (MWA) : Design and Status Divya Oberoi, Lenoid Benkevitch MIT Haystack Observatory doberoi, On behalf of the MWA Project

Partner Institutions and Sponsors

What is the MWA? A low-frequency imaging array – 80 – 300 MHz Wide Field of View (FoV) – Array elements – arrays of dipoles

The design approach Collaborators Logistics Politics

RFI Ionosphere Wide FoV Calibration & Mapping

RFI Ionosphere Wide FoV Calibration & Mapping Baseline Length

RFI Ionosphere Wide FoV Calibration & Mapping

RFI Ionosphere Wide FoV Calibration & Mapping Shire of Murchison. Pop: 199 Area: 41,173 km 2 (NL: ~41,500 km 2 )‏ (UK: ~244,820 km 2 )‏  Humans ~ 10 5 lower than MA, UK, NL

RFI Ionosphere Wide FoV Calibration & Mapping

Array Configuration

u-v coverage Monochromatic snapshot Zenith pointing

Point Spread Function 3-4% ~0.3% -10.2%

Murchison Widefield Array Frequency range MHz Number of receptors 8192 dual polarization dipoles Number of tiles 512 Collecting area ~8000 m 2 (at 200 MHz) Field of View ~15°-50° (1000 deg 2 at 200 MHz) Configuration Core array ~1.5 km diameter (95%, 3.4’) + extended array ~3 km diameter (5%, 1.7’) Bandwidth 220 MHz (Sampled); MHz (Processed) # Spectral channels 1024 (3072) Temporal resolution 8 s (0.5 s) Polarization Full Stokes Point source sensitivity 20mJy in 1 s (30.72 MHz, 200 MHz) 0.34mJy in 1 hr Multi-beam capability 32, single polarization Number of baselines (VLA: 351, GMRT: 435, ATA: 861)

Choice of Science Objectives

Key Features of Interest Magnetic field measurements in the corona and heliosphere via Faraday rotation observations – 1 source every 6-9 deg 2 Velocity, turbulence characteristics etc. via IPS – 32 independent beams and wide fields of view Location and evolution of shocks via imaging of Type II bursts – Very good monochromatic snap-shot imaging capabilities – Sufficient time and spectral resolution

32 Tile Prototype  Motivation  Engineering test bed  End to end signal/data path and system performance testing  Training data sets for calibration system  Learning to operate in the site conditions  Early Science

Broadband spectrum Orbcomm satellites Defense satellite network FM Band A. Roshi, RRI

R. Wayth, CfA/Curtin Uni. Puppis A, 159 MHz, 1.28 MHz (10 kHz), 24 elements First Light Images from MWA prototype

Best image so far Pictor A, MHz  = 330 mJy Christopher Williams, MIT 7, 5min scans, spread over 6 hours 1.28 MHz 27 tiles Crosses mark the location of sources of with flux > 2Jy (1420 MHz) Dynamic Range 1000+

Status and Schedule Analog hardware for 32T system in place Digital hardware (correlator) deployment - June 09 32T performance testing - 4Q 2009 End of build-out phase for the final system – 3-4Q 2010 Science capabilities will slowly grow starting now – Remote operations started – Hardware correlator  MHz – A strong possibility of an interim 128T array, while we build out to 512T.

Summary MWA - optimized for calibration and imaging challenges at low frequencies Needs of the key science applications and the instrument’s capabilities are very well matched Data flow from the prototype array has commenced Busy schedule and exciting times ahead Stay tuned…

RFI Ionosphere Wide FoV Calibration & Mapping Baseline Length

Array Configuration

Array Coplanarity Peak-to-peak variation ~5 m (excluding outliers) 0.5 m contours Accuracy of topgographic data 0.5m

Choice of Science Objectives

First Light Images from MWA prototype Pictor A, 159 MHz, 1.28 MHz (10 kHz), 5 min (1 s), 24 Elements R. Wayth, CfA 10 

ObservationsSimulated map R. Wayth, CfA Pictor A, 159 MHz, 1.28 MHz (10 kHz), 5 min (1 s), 24 Elements First Light Images from MWA prototype 10 