Adnan Bashir, Michoacán University, Mexico Hadron Form Factors From Schwinger-Dyson Equations Pion Form Factors From Schwinger-Dyson Equations Collaborators:

Slides:



Advertisements
Similar presentations
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Advertisements

Adnan Bashir Michoacán University, Mexico Michoacán University, Mexico Argonne National Laboratory, USA Kent State University, USA γ * π 0 γ Transition.
Assembling Hadrons From Quark-Gluon Pieces Adnan Bashir, Michoacán University, Mexico Collaborators: J. Aslam, Quaid-i-Azam University, Pakistan F. Akram,
Adnan Bashir, Michoacán University, Mexico   * Transition Form Factor Theory vs Experiment: Past, Present & Future Collaborators: F. Akram, University.
April 06, 2005 JLab 12 GeV upgrade DOE Science Review 1 Fundamental Structure of Hadrons Zein-Eddine Meziani April 06, 2005 DOE Science Review for JLab.
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
Functional renormalization – concepts and prospects.
Smashing the Standard Model: Physics at the CERN LHC
Chiral freedom and the scale of weak interactions.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
THE THREE-POINT VERTEX HUGS 2015 June Luis A. Fernández R.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
The LHC Rap (Large Hadron Collider). Lattice QCD in the Era of the Large Hadron Collider Anna Hasenfratz University of Colorado, Boulder University of.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
T(r)opical Dyson Schwinger Equations Craig D. Roberts Physics Division Argonne National Laboratory & School of Physics Peking University & Department of.
Minimal Ward-Takahashi vertices and light cone pion distribution amplitudes from G auge invariant N onlocal D ynamical quark model 清华大学物理系 王 青 Nov 27,
Generalities of the approaches for extraction of N* electrocouplings at high Q 2 Modeling of resonant / non resonant contributions is needed and should.
School of Arts & Sciences Dean’s Coffee Presentation SUNY Institute of Technology, February 4, 2005 High Energy Physics: An Overview of Objectives, Challenges.
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
Adnan Bashir Michoacán University, Mexico Michoacán University, Mexico Argonne National Laboratory, USA Kent State University, USA From Free Quarks to.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
General Discussion some general remarks some questions.
F.-H. Heinsius (Universität Freiburg/CERN) Introduction Gluon polarization in the nucleon Transverse spin distribution Newest Results from the Experiment.
Harleen Dahiya Panjab University, Chandigarh IMPLICATIONS OF  ´ COUPLING IN THE CHIRAL CONSTITUENT QUARK MODEL.
Interaction Model of Gap Equation Si-xue Qin Peking University & ANL Supervisor: Yu-xin Liu & Craig D. Roberts With Lei Chang & David Wilson of ANL.
Sketching the pseudoscalar mesons’ valence-quark parton distribution functions Chen Chen University of Science and Technology of China November 16 th,
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。

* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
Hadron 2015 / A. Valcarce1/19 Unraveling the pattern of XYZ mesons. Phys. Lett. B 736, 325 (2014) Phys. Rev. Lett. 103, (2009); Phys. Rev. D 79,
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Abelian Anomaly & Neutral Pion Production Craig Roberts Physics Division.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
CHARM th International Workshop on Charm Physics Honolulu May
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Structure of the Proton mass
Introduction to pQCD and TMD physics
into a quark-antiquark pair self-coupling of gluons
Pion Transition Form Factor University of Michoacán, Mexico
Charmonia & Bottomonia in a Contact Interaction
mesons as probes to explore the chiral symmetry in nuclear matter
Direct Detection of Vector Dark Matter
Weak Interacting Holographic QCD
Schwinger-Dyson Equations - Applications
Exciting Hadrons Vladimir Pascalutsa
Adnan Bashir, UMSNH, Mexico
Transversity Distributions and Tensor Charges of the Nucleon
Charm2010 4TH International Workshop on Charm Physics
Adnan Bashir, UMSNH, Mexico
PHYS 3446 – Lecture #23 Standard Model Wednesday, Apr 25, 2012
Factorization in some exclusive B meson decays
Presentation transcript:

Adnan Bashir, Michoacán University, Mexico Hadron Form Factors From Schwinger-Dyson Equations Pion Form Factors From Schwinger-Dyson Equations Collaborators: F. Akram, University of Punjab, Pakistan Y.X. Liu, Peking University, China M.R. Pennington, Durham University & JLab, UK J.R. Quintero, Huelva University, Spain A. Raya, Michoacán University, Mexico C.D. Roberts, Argonne National Laboratory, USA P.C. Tandy, Kent State University, USA R. Bermudez, University of Sonora, Mexico L. Chang, University of Adelaide, Australia L.X. Gutiérrez, University of Michoacán, Mexico D. Wilson, Jlab, USA

Contents Conclusions Conclusions Conclusions Conclusions Conclusions Conclusions Conclusions Conclusions Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Schwinger-Dyson Equations – The Ingredients Quark Propagator: Quark Mass Function Quark Propagator: Quark Mass Function Quark Propagator: Quark Mass Function Quark Propagator: Quark Mass Function Quark-Photon Vertex Quark-Photon Vertex Quark-Photon Vertex Quark-Photon Vertex Pion Electromagnetic Form Factor Pion Electromagnetic Form Factor Pion Electromagnetic Form Factor Pion Electromagnetic Form Factor The Gluon Propagator/Quark Gluon Vertex The Gluon Propagator/Quark Gluon Vertex The Gluon Propagator/Quark Gluon Vertex The Gluon Propagator/Quark Gluon Vertex The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: The Q 2 Evolution of Form Factors: Pion to  * Transition Form Factor Pion to  * Transition Form Factor Pion to  * Transition Form Factor Pion to  * Transition Form Factor Mass Function and Form Factors Mass Function and Form Factors Mass Function and Form Factors Mass Function and Form Factors

Introduction Hadronic form factors are intimately related to their Hadronic form factors are intimately related to their internal structure. The challenge of their understanding internal structure. The challenge of their understanding occupies a central place in particle/nuclear physics. occupies a central place in particle/nuclear physics. Hadronic form factors are intimately related to their Hadronic form factors are intimately related to their internal structure. The challenge of their understanding internal structure. The challenge of their understanding occupies a central place in particle/nuclear physics. occupies a central place in particle/nuclear physics. QCD is the established theory of strong interactions QCD is the established theory of strong interactions which is responsible for binding quarks and gluons to which is responsible for binding quarks and gluons to form these hadrons (mesons and baryons). form these hadrons (mesons and baryons). QCD is the established theory of strong interactions QCD is the established theory of strong interactions which is responsible for binding quarks and gluons to which is responsible for binding quarks and gluons to form these hadrons (mesons and baryons). form these hadrons (mesons and baryons). Unraveling hadronic form factors from the basic building Unraveling hadronic form factors from the basic building blocks of QCD is an outstanding problem. blocks of QCD is an outstanding problem. Unraveling hadronic form factors from the basic building Unraveling hadronic form factors from the basic building blocks of QCD is an outstanding problem. blocks of QCD is an outstanding problem. Schwinger-Dyson equations are the fundamental equations Schwinger-Dyson equations are the fundamental equations of QCD and combine its UV and IR behavior. of QCD and combine its UV and IR behavior. Schwinger-Dyson equations are the fundamental equations Schwinger-Dyson equations are the fundamental equations of QCD and combine its UV and IR behavior. of QCD and combine its UV and IR behavior. Thus they provide a platform to study the form factors Thus they provide a platform to study the form factors from small to large photon virtualities, studied at different from small to large photon virtualities, studied at different hadron facilities. hadron facilities. Thus they provide a platform to study the form factors Thus they provide a platform to study the form factors from small to large photon virtualities, studied at different from small to large photon virtualities, studied at different hadron facilities. hadron facilities.

SDE for QCD have been extensively applied to meson SDE for QCD have been extensively applied to meson SDE for QCD have been extensively applied to meson SDE for QCD have been extensively applied to meson spectra and interactions below the masses ~ 1 GeV. spectra and interactions below the masses ~ 1 GeV. SDE for QCD have been extensively applied to meson SDE for QCD have been extensively applied to meson SDE for QCD have been extensively applied to meson SDE for QCD have been extensively applied to meson spectra and interactions below the masses ~ 1 GeV. spectra and interactions below the masses ~ 1 GeV. They have been employed to calculate: They have been employed to calculate: They have been employed to calculate: They have been employed to calculate: They have been employed to calculate: They have been employed to calculate: They have been employed to calculate: They have been employed to calculate: P. Maris, C.D. Roberts, Phys. Rev. C (1997). P. Maris, P.C. Tandy, Phys. Rev. C (2000). D. Jarecke, P. Maris, P.C. Tandy, Phys. Rev. C (2003). the masses, charge radii and decays of mesons the masses, charge radii and decays of mesons the masses, charge radii and decays of mesons the masses, charge radii and decays of mesons elastic pion and kaon form factors elastic pion and kaon form factors elastic pion and kaon form factors elastic pion and kaon form factors pion and kaon valence quark-distribution functions pion and kaon valence quark-distribution functions pion and kaon valence quark-distribution functions pion and kaon valence quark-distribution functions T. Nguyen, AB, C.D. Roberts, P.C. Tandy, T. Nguyen, AB, C.D. Roberts, P.C. Tandy, Phys. Rev. C (2011). nucleon form factors nucleon form factors nucleon form factors nucleon form factors G. Eichmann, et. al., G. Eichmann, et. al., Phys. Rev. C (2009). D. Wilson, L. Chang and C.D. Roberts, Phys. Rev. C (2012). “Collective Perspective on advances in DSE QCD”,AB, L. Chang, I.C. Cloet, B. El Bennich, Y. Liu, C.D. Roberts, P.C. Tandy, Commun. Theor. Phys (2012) Introduction Through SDEs, we can study the structure of hadrons Through SDEs, we can study the structure of hadrons Through SDEs, we can study the structure of hadrons Through SDEs, we can study the structure of hadrons through first principles in the continuum. through first principles in the continuum. Through SDEs, we can study the structure of hadrons Through SDEs, we can study the structure of hadrons Through SDEs, we can study the structure of hadrons Through SDEs, we can study the structure of hadrons through first principles in the continuum. through first principles in the continuum.

Introduction Parity Partners & Parity Partners & Chiral Symmetry Breaking Chiral Symmetry Breaking Parity Partners & Parity Partners & Chiral Symmetry Breaking Chiral Symmetry Breaking

Introduction The QCD Lagrangian: The QCD Lagrangian: The QCD Lagrangian: The QCD Lagrangian:

0.2 fm0.02 fm0.002 fm 1000 MeV 5 MeV QCD We can trace the origin of 98% of the luminous matter to QCD interactions. We can trace the origin of 98% of the luminous matter to QCD interactions.Introduction Asymptotic Freedom Asymptotic Freedom Asymptotic Freedom Asymptotic Freedom Infrared Slavery Infrared Slavery

Introduction

Simplest SDE - Simplest SDE - quark propagator: quark propagator: Simplest SDE - Simplest SDE - quark propagator: quark propagator: The Quark Propagator The Quark Propagator The Quark Propagator The Quark Propagator

The quark The quark propagator: The quark The quark propagator: Quark mass is a Quark mass is a function of momentum, function of momentum, dropping as 1/p 2 in the dropping as 1/p 2 in the ultraviolet. Quark mass is a Quark mass is a function of momentum, function of momentum, dropping as 1/p 2 in the dropping as 1/p 2 in the ultraviolet. Higgs mechanism is Higgs mechanism is almost irrelevant to the almost irrelevant to the infrared enhancement of infrared enhancement of quark mass. quark mass. Higgs mechanism is Higgs mechanism is almost irrelevant to the almost irrelevant to the infrared enhancement of infrared enhancement of quark mass. quark mass. The Quark Propagator The Quark Propagator The Quark Propagator The Quark Propagator

The Gluon Propagator Modern SDE and lattice results support decoupling solution for the gluon propagator. Modern SDE and lattice results support decoupling solution for the gluon propagator. Modern SDE and lattice results support decoupling solution for the gluon propagator. Modern SDE and lattice results support decoupling solution for the gluon propagator. Momentum dependent gluon mass is reminiscent of the momentum dependent quark mass function. Momentum dependent gluon mass is reminiscent of the momentum dependent quark mass function. Momentum dependent gluon mass is reminiscent of the momentum dependent quark mass function. Momentum dependent gluon mass is reminiscent of the momentum dependent quark mass function. It is in accord with the improved GZ-picture. It is in accord with the improved GZ-picture. It is in accord with the improved GZ-picture. It is in accord with the improved GZ-picture. A. Ayala et. al. Phys. Rev. D (2012). A. Ayala et. al. Phys. Rev. D (2012). AB, C. Lei, I. Cloet, B. El Bennich, Y. Liu, C. Roberts, AB, C. Lei, I. Cloet, B. El Bennich, Y. Liu, C. Roberts, P. Tandy, Comm. Theor. Phys (2012) Gluon Propagator: Gluon Propagator: Gluon Propagator: Gluon Propagator: A. Bashir, A. Raya, J. Rodrigues-Quintero, A. Bashir, A. Raya, J. Rodrigues-Quintero, Phys. Rev. D (2013). I.L. Bogolubsky, et. al. Phys. Lett. B (2009). I.L. Bogolubsky, et. al. Phys. Lett. B (2009).

J. Skullerud, P. Bowman, A. Kizilersu, D. Leinweber, A. Williams, J. High Energy Phys (2003) M. Bhagwat, M. Pichowsky, C. Roberts, P. Tandy, Phys. Rev. C (2003). AB, L. Gutiérrez, M. Tejeda, AIP Conf. Proc (2008). The Quark-Gluon The Quark-Gluon Vertex: One of the 12 form factors One of the 12 form factors The Quark-Gluon The Quark-Gluon Vertex: One of the 12 form factors One of the 12 form factors The Quark-Gluon Vertex The Quark-Gluon Vertex The Quark-Gluon Vertex The Quark-Gluon Vertex

Fortunately, both the quark-photon & the quark-gluon vertices require the same number of basis tensors for their description. So a unified approach is possible. The Quark-Photon Vertex In studying the elastic or transition form factors of hadrons, it is the photon which probes its constituents, highlighting the importance of the quark-photon vertex.

AB, M.R. Pennington Phys. Rev. D (1994) AB, M.R. Pennington Phys. Rev. D (1994) D.C. Curtis and M.R. Pennington Phys. Rev. D (1990) D.C. Curtis and M.R. Pennington Phys. Rev. D (1990) A. Kizilersu and M.R. Pennington Phys. Rev. D (2009) A. Kizilersu and M.R. Pennington Phys. Rev. D (2009) L. Chang, C.D. Roberts, Phys. Rev. Lett (2009) L. Chang, C.D. Roberts, Phys. Rev. Lett (2009) AB, C. Calcaneo, L. Gutiérrez, M. Tejeda, Phys. Rev. D (2011) AB, C. Calcaneo, L. Gutiérrez, M. Tejeda, Phys. Rev. D (2011) AB, R. Bermudez, L. Chang, C.D. Roberts, Phys. Rev. C85, (2012). AB, R. Bermudez, L. Chang, C.D. Roberts, Phys. Rev. C85, (2012). Phenomenology Gauge Covariance Lattice Multiplicative Renormalization Perturbation Theory Quark-photon/ quark-gluon vertex Significantly, this last ansatz contains nontrivial factors associated with those tensors whose appearance is solely driven by dynamical chiral symmetry breaking. It yields gauge independent critical coupling in QED. Quark-photon Vertex Quark-photon Vertex Quark-photon Vertex Quark-photon Vertex The Quark-Photon Vertex The Quark-Photon Vertex The Quark-Photon Vertex The Quark-Photon Vertex It also reproduces large anomalous magnetic moment for quarks in infrared. Rocío Bermúdez, Luis Albino : Quark-Gluon Vertex.

The Q 2 Evolution of Form Factors The Q 2 Evolution of Form Factors The Q 2 Evolution of Form Factors The Q 2 Evolution of Form Factors Observing the transition of the hadron from a sea of Observing the transition of the hadron from a sea of quarks and gluons to the one with valence quarks alone is an experimental and theoretical challenge. quarks and gluons to the one with valence quarks alone is an experimental and theoretical challenge. Observing the transition of the hadron from a sea of Observing the transition of the hadron from a sea of quarks and gluons to the one with valence quarks alone is an experimental and theoretical challenge. quarks and gluons to the one with valence quarks alone is an experimental and theoretical challenge. Schwinger-Dyson equations are the fundamental equations Schwinger-Dyson equations are the fundamental equations of QCD and combine its UV and IR behaviour. of QCD and combine its UV and IR behaviour. Schwinger-Dyson equations are the fundamental equations Schwinger-Dyson equations are the fundamental equations of QCD and combine its UV and IR behaviour. of QCD and combine its UV and IR behaviour.

The Q 2 Evolution of Form Factors Nobel Prize 2008: Nobel Prize 2008: “for the discovery of the mechanism of spontaneous “for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics” broken symmetry in subatomic physics” Nobel Prize 2008: Nobel Prize 2008: “for the discovery of the mechanism of spontaneous “for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics” broken symmetry in subatomic physics” quark-anti-quark

Contact interaction: Contact interaction: Contact interaction: Contact interaction: The Q 2 Evolution of Form Factors The Q 2 Evolution of Form Factors The Q 2 Evolution of Form Factors The Q 2 Evolution of Form Factors

Within the rainbow ladder truncation, the elastic Within the rainbow ladder truncation, the elastic electromagnetic pion form factor: electromagnetic pion form factor: Within the rainbow ladder truncation, the elastic Within the rainbow ladder truncation, the elastic electromagnetic pion form factor: electromagnetic pion form factor: The pattern of chiral symmetry breaking dictates the The pattern of chiral symmetry breaking dictates the momentum dependence of the elastic pion form factor. momentum dependence of the elastic pion form factor. The pattern of chiral symmetry breaking dictates the The pattern of chiral symmetry breaking dictates the momentum dependence of the elastic pion form factor. momentum dependence of the elastic pion form factor. L. Gutiérrez, AB, I.C. Cloet, C.D. Roberts, Phys. Rev. C (2010). L. Gutiérrez, AB, I.C. Cloet, C.D. Roberts, Phys. Rev. C (2010). F. Akram, AB, L. Gutiérrez, B. Masud, J. Quintero, C. Calcaneo, M. Tejeda, Phys Rev. D (2013). [QED] Pion Electromagnetic Form Factor

When do we expect perturbation theory to set in? When do we expect perturbation theory to set in? When do we expect perturbation theory to set in? When do we expect perturbation theory to set in? Perturbative Momentum transfer Q is primarily shared equally (Q/2) among quarks as BSA is peaked at zero relative momentum. Momentum transfer Q is primarily shared equally (Q/2) among quarks as BSA is peaked at zero relative momentum. Momentum transfer Q is primarily shared equally (Q/2) among quarks as BSA is peaked at zero relative momentum. Momentum transfer Q is primarily shared equally (Q/2) among quarks as BSA is peaked at zero relative momentum. Jlab 12GeV: 2<Q 2 <9 GeV 2 electromagnetic and transition pion form factors.

Pion to  * Transition Form Factor Pion to  * Transition Form Factor Pion to  * Transition Form Factor Pion to  * Transition Form Factor The transition form factor: The transition form factor: The transition form factor: The transition form factor: CELLO CELLO H.J. Behrend et.al., Z. Phys C (1991). 0.7 – 2.2 GeV 2 CLEO CLEO J. Gronberg et. al., Phys. Rev. D57 33 (1998). 1.7 – 8.0 GeV 2 BaBar BaBar R. Aubert et. al., Phys. Rev. D (2009). 4.0 – 40.0 GeV 2 Leading twist asymptotic QDC calculation was carried out in: Leading twist asymptotic QDC calculation was carried out in: Leading twist asymptotic QDC calculation was carried out in: Leading twist asymptotic QDC calculation was carried out in: G.P. Lepage, and S.J. Brodsky, Phys. Rev. D22, 2157 (1980).

The transition form factor: The transition form factor: The transition form factor: The transition form factor: CELLO CELLO H.J. Behrend et.al., Z. Phys C (1991). 0.7 – 2.2 GeV 2 CLEO CLEO J. Gronberg et. al., Phys. Rev. D57 33 (1998). 1.7 – 8.0 GeV 2 BaBar BaBar R. Aubert et. al., Phys. Rev. D (2009). 4.0 – 40.0 GeV 2 The leading twist asymptotic QCD calculation: The leading twist asymptotic QCD calculation: The leading twist asymptotic QCD calculation: The leading twist asymptotic QCD calculation: G.P. Lepage, and S.J. Brodsky, Phys. Rev. D22, 2157 (1980). Belle Belle S. Uehara et. al., arXiv: [hep-ex] (2012). 4.0 – 40.0 GeV 2 H.L.L. Robertes, C.D. Roberts, AB, L.X. Gutiérrez and P.C. Tandy, Phys. Rev. C82, (065202:1-11) Pion to  * Transition Form Factor Pion to  * Transition Form Factor Pion to  * Transition Form Factor Pion to  * Transition Form Factor

The transition form factor: The transition form factor: The transition form factor: The transition form factor: Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Belle II will have 40 times more luminosity. Precise measurements at large Q 2 will provide a stringent Precise measurements at large Q 2 will provide a stringent constraint on the pattern of chiral symmetry breaking. constraint on the pattern of chiral symmetry breaking. Precise measurements at large Q 2 will provide a stringent Precise measurements at large Q 2 will provide a stringent constraint on the pattern of chiral symmetry breaking. constraint on the pattern of chiral symmetry breaking. Vladimir Savinov: Vladimir Savinov: 5 th Workshop of the APS 5 th Workshop of the APS Topical Group on Hadronic Topical Group on Hadronic Physics, April Physics, April Vladimir Savinov: Vladimir Savinov: 5 th Workshop of the APS 5 th Workshop of the APS Topical Group on Hadronic Topical Group on Hadronic Physics, April Physics, April Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC

Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Precise calculations with different interactions (p 2 ) -α at Precise calculations with different interactions (p 2 ) -α at increasing Q 2 will provide a stringent constraint on the increasing Q 2 will provide a stringent constraint on the pattern of chiral symmetry breaking. pattern of chiral symmetry breaking. Precise calculations with different interactions (p 2 ) -α at Precise calculations with different interactions (p 2 ) -α at increasing Q 2 will provide a stringent constraint on the increasing Q 2 will provide a stringent constraint on the pattern of chiral symmetry breaking. pattern of chiral symmetry breaking.

Double tagging? Double tagging? Double tagging? Double tagging? Double tagging? Double tagging? Double tagging? Double tagging? Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Probing the (p 2 ) -α dependence can be neater. Vladimir Savinov Vladimir Savinov Vladimir Savinov Vladimir Savinov Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC Pion to  * Transition Form FactorC

Conclusions A systematic framework based upon the QCD equations A systematic framework based upon the QCD equations of motion (SDE) and its symmetries is required to chart of motion (SDE) and its symmetries is required to chart out and comprehend the Q 2 evolution of these form out and comprehend the Q 2 evolution of these form factors and make predictions. factors and make predictions. A systematic framework based upon the QCD equations A systematic framework based upon the QCD equations of motion (SDE) and its symmetries is required to chart of motion (SDE) and its symmetries is required to chart out and comprehend the Q 2 evolution of these form out and comprehend the Q 2 evolution of these form factors and make predictions. factors and make predictions. The large Q 2 evolution of the pion form factors, their experimental evaluation and theoretical predictions are likely to provide us with deep understanding of the The large Q 2 evolution of the pion form factors, their experimental evaluation and theoretical predictions are likely to provide us with deep understanding of the pattern of DCSB and confinement of the fundamental pattern of DCSB and confinement of the fundamental degrees of freedom, namely quarks and gluons. degrees of freedom, namely quarks and gluons. The large Q 2 evolution of the pion form factors, their experimental evaluation and theoretical predictions are likely to provide us with deep understanding of the The large Q 2 evolution of the pion form factors, their experimental evaluation and theoretical predictions are likely to provide us with deep understanding of the pattern of DCSB and confinement of the fundamental pattern of DCSB and confinement of the fundamental degrees of freedom, namely quarks and gluons. degrees of freedom, namely quarks and gluons. Predictions based upon the contact interaction, QCD SDE Predictions based upon the contact interaction, QCD SDE as well as the intermediate power laws (p 2 ) -  can provide experimentalist with a platform to compare and contrast future experimental results. Mesons, diquarks, baryons!!! as well as the intermediate power laws (p 2 ) -  can provide experimentalist with a platform to compare and contrast future experimental results. Mesons, diquarks, baryons!!! Predictions based upon the contact interaction, QCD SDE Predictions based upon the contact interaction, QCD SDE as well as the intermediate power laws (p 2 ) -  can provide experimentalist with a platform to compare and contrast future experimental results. Mesons, diquarks, baryons!!! as well as the intermediate power laws (p 2 ) -  can provide experimentalist with a platform to compare and contrast future experimental results. Mesons, diquarks, baryons!!!