1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.

Slides:



Advertisements
Similar presentations
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Advertisements

Chi Squared Tests. Introduction Two statistical techniques are presented. Both are used to analyze nominal data. –A goodness-of-fit test for a multinomial.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
Inference about the Difference Between the
1 1 Slide Mátgæði Kafli 11 í Newbold Snjólfur Ólafsson + Slides Prepared by John Loucks © 1999 ITP/South-Western College Publishing.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide MA4704 Problem solving 4 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference Between Two.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Discrete (Categorical) Data Analysis
1 1 Slide © 2009 Econ-2030-Applied Statistics-Dr. Tadesse. Chapter 11: Comparisons Involving Proportions and a Test of Independence n Inferences About.
Statistical Inference About Means and Proportions With Two Populations
Chapter Goals After completing this chapter, you should be able to:
1 Pertemuan 09 Pengujian Hipotesis Proporsi dan Data Katagorik Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Chapter 16 Chi Squared Tests.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Chapter 11a: Comparisons Involving Proportions and a Test of Independence Inference about the Difference between the Proportions of Two Populations Hypothesis.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
Goodness of Fit Test for Proportions of Multinomial Population Chi-square distribution Hypotheses test/Goodness of fit test.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
© 2004 Prentice-Hall, Inc.Chap 12-1 Basic Business Statistics (9 th Edition) Chapter 12 Tests for Two or More Samples with Categorical Data.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide Slides by John Loucks St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 11 Inferences About Population Variances n Inference about a Population Variance n.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2005 Thomson/South-Western Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial Population Goodness of.
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Copyright © 2009 Cengage Learning 15.1 Chapter 16 Chi-Squared Tests.
A Course In Business Statistics 4th © 2006 Prentice-Hall, Inc. Chap 9-1 A Course In Business Statistics 4 th Edition Chapter 9 Estimation and Hypothesis.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 In this case, each element of a population is assigned to one and only one of several classes or categories. Chapter 11 – Test of Independence - Hypothesis.
1 1 Slide Chapter 11 Comparisons Involving Proportions n Inference about the Difference Between the Proportions of Two Populations Proportions of Two Populations.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 16 Chi-Squared Tests.
Learning Objectives Copyright © 2002 South-Western/Thomson Learning Statistical Testing of Differences CHAPTER fifteen.
Introduction to Probability and Statistics Thirteenth Edition Chapter 13 Analysis of Categorical Data.
1/71 Statistics Tests of Goodness of Fit and Independence.
Chapter Outline Goodness of Fit test Test of Independence.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 23 日 第六週:配適度與獨立性檢定.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
Chi-Två Test Kapitel 6. Introduction Two statistical techniques are presented, to analyze nominal data. –A goodness-of-fit test for the multinomial experiment.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Test of independence: Contingency Table
Chapter 11 – Test of Independence - Hypothesis Test for Proportions of a Multinomial Population In this case, each element of a population is assigned.
St. Edward’s University
St. Edward’s University
CHAPTER 11 CHI-SQUARE TESTS
John Loucks St. Edward’s University . SLIDES . BY.
Statistics for Business and Economics (13e)
Econ 3790: Business and Economics Statistics
CHI SQUARE TEST OF INDEPENDENCE
Chapter Outline Goodness of Fit test Test of Independence.
St. Edward’s University
Presentation transcript:

1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University

2 2 Slide © 2009 Thomson South-Western. All Rights Reserved Inferences About the Difference Between Inferences About the Difference Between Two Population Proportions Two Population Proportions Chapter 11 Comparisons Involving Proportions and a Test of Independence Hypothesis Test for Proportions Hypothesis Test for Proportions of a Multinomial Population of a Multinomial Population Test of Independence Test of Independence

3 3 Slide © 2009 Thomson South-Western. All Rights Reserved Inferences About the Difference Between Two Population Proportions n Interval Estimation of p 1 - p 2 n Hypothesis Tests About p 1 - p 2

4 4 Slide © 2009 Thomson South-Western. All Rights Reserved n Expected Value Sampling Distribution of where: n 1 = size of sample taken from population 1 n 2 = size of sample taken from population 2 n 2 = size of sample taken from population 2 n Standard Deviation (Standard Error)

5 5 Slide © 2009 Thomson South-Western. All Rights Reserved If the sample sizes are large, the sampling distribution If the sample sizes are large, the sampling distribution of can be approximated by a normal probability of can be approximated by a normal probability distribution. distribution. If the sample sizes are large, the sampling distribution If the sample sizes are large, the sampling distribution of can be approximated by a normal probability of can be approximated by a normal probability distribution. distribution. The sample sizes are sufficiently large if all of these The sample sizes are sufficiently large if all of these conditions are met: conditions are met: The sample sizes are sufficiently large if all of these The sample sizes are sufficiently large if all of these conditions are met: conditions are met: n1p1 > 5n1p1 > 5n1p1 > 5n1p1 > 5 n 1 (1 - p 1 ) > 5 n2p2 > 5n2p2 > 5n2p2 > 5n2p2 > 5 n 2 (1 - p 2 ) > 5 Sampling Distribution of

6 6 Slide © 2009 Thomson South-Western. All Rights Reserved Sampling Distribution of p 1 – p 2

7 7 Slide © 2009 Thomson South-Western. All Rights Reserved Interval Estimation of p 1 - p 2 n Interval Estimate

8 8 Slide © 2009 Thomson South-Western. All Rights Reserved Market Research Associates is conducting research to Market Research Associates is conducting research to evaluate the effectiveness of a client’s new advertising campaign. Before the new campaign began, a telephone survey of 150 households in the test market area showed 60 households “aware” of the client’s product. Interval Estimation of p 1 - p 2 n Example: Market Research Associates The new campaign has been initiated with TV and The new campaign has been initiated with TV and newspaper advertisements running for three weeks.

9 9 Slide © 2009 Thomson South-Western. All Rights Reserved A survey conducted immediately after the new A survey conducted immediately after the new campaign showed 120 of 250 households “aware” of the client’s product. Interval Estimation of p 1 - p 2 n Example: Market Research Associates Does the data support the position that the Does the data support the position that the advertising campaign has provided an increased awareness of the client’s product?

10 Slide © 2009 Thomson South-Western. All Rights Reserved Point Estimator of the Difference Between Two Population Proportions = sample proportion of households “aware” of the = sample proportion of households “aware” of the product after the new campaign product after the new campaign = sample proportion of households “aware” of the = sample proportion of households “aware” of the product before the new campaign product before the new campaign p 1 = proportion of the population of households p 1 = proportion of the population of households “aware” of the product after the new campaign “aware” of the product after the new campaign p 2 = proportion of the population of households p 2 = proportion of the population of households “aware” of the product before the new campaign “aware” of the product before the new campaign

11 Slide © 2009 Thomson South-Western. All Rights Reserved (.0510) Interval Estimation of p 1 - p 2 Hence, the 95% confidence interval for the difference Hence, the 95% confidence interval for the difference in before and after awareness of the product is -.02 to For  =.05, z.025 = 1.96:

12 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 n Hypotheses H 0 : p 1 - p 2 < 0 H a : p 1 - p 2 > 0 Left-tailedRight-tailedTwo-tailed We focus on tests involving no difference between the two population proportions (i.e. p 1 = p 2 )

13 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 Standard Error of when p 1 = p 2 = p Standard Error of when p 1 = p 2 = p Pooled Estimator of p when p 1 = p 2 = p Pooled Estimator of p when p 1 = p 2 = p

14 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 Test Statistic Test Statistic

15 Slide © 2009 Thomson South-Western. All Rights Reserved Can we conclude, using a.05 level of significance, Can we conclude, using a.05 level of significance, that the proportion of households aware of the client’s product increased after the new advertising campaign? Hypothesis Tests about p 1 - p 2 n Example: Market Research Associates

16 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 1. Develop the hypotheses. p -Value and Critical Value Approaches p -Value and Critical Value Approaches H 0 : p 1 - p 2 < 0 H a : p 1 - p 2 > 0 p 1 = proportion of the population of households p 1 = proportion of the population of households “aware” of the product after the new campaign “aware” of the product after the new campaign p 2 = proportion of the population of households p 2 = proportion of the population of households “aware” of the product before the new campaign “aware” of the product before the new campaign

17 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 2. Specify the level of significance.  = Compute the value of the test statistic. p -Value and Critical Value Approaches p -Value and Critical Value Approaches

18 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 5. Determine whether to reject H 0. We cannot conclude that the proportion of households aware of the client’s product increased after the new campaign. 4. Compute the p –value. For z = 1.56, the p –value =.0594 Because p –value >  =.05, we cannot reject H 0. p –Value Approach p –Value Approach

19 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Tests about p 1 - p 2 Critical Value Approach Critical Value Approach 5. Determine whether to reject H 0. Because 1.56 < 1.645, we cannot reject H 0. For  =.05, z.05 = Determine the critical value and rejection rule. Reject H 0 if z > We cannot conclude that the proportion of households aware of the client’s product increased after the new campaign.

20 Slide © 2009 Thomson South-Western. All Rights Reserved Hypothesis Test for Proportions of a Multinomial Population 1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, f i, for each of the k categories. frequency, f i, for each of the k categories. 3. Assuming H 0 is true, compute the expected frequency, e i, in each category by multiplying the frequency, e i, in each category by multiplying the category probability by the sample size. category probability by the sample size.

21 Slide © 2009 Thomson South-Western. All Rights Reserved 4. Compute the value of the test statistic. Note: The test statistic has a chi-square distribution with k – 1 df provided that the expected frequencies are 5 or more for all categories. Note: The test statistic has a chi-square distribution with k – 1 df provided that the expected frequencies are 5 or more for all categories. f i = observed frequency for category i e i = expected frequency for category i k = number of categories where: Hypothesis Test for Proportions of a Multinomial Population

22 Slide © 2009 Thomson South-Western. All Rights Reserved where  is the significance level and there are k - 1 degrees of freedom p -value approach: Critical value approach: Reject H 0 if p -value <  5. Rejection rule: Reject H 0 if Hypothesis Test for Proportions of a Multinomial Population

23 Slide © 2009 Thomson South-Western. All Rights Reserved Multinomial Distribution Goodness of Fit Test n Example: Finger Lakes Homes (A) Finger Lakes Homes manufactures four models of Finger Lakes Homes manufactures four models of prefabricated homes, a two-story colonial, a log cabin, a split-level, and an A-frame. To help in production planning, management would like to determine if previous customer purchases indicate that there is a preference in the style selected.

24 Slide © 2009 Thomson South-Western. All Rights Reserved Model Colonial Log Split-Level A-Frame # Sold The number of homes sold of each model for 100 The number of homes sold of each model for 100 sales over the past two years is shown below. Multinomial Distribution Goodness of Fit Test n Example: Finger Lakes Homes (A)

25 Slide © 2009 Thomson South-Western. All Rights Reserved n Hypotheses Multinomial Distribution Goodness of Fit Test where: p C = population proportion that purchase a colonial p C = population proportion that purchase a colonial p L = population proportion that purchase a log cabin p L = population proportion that purchase a log cabin p S = population proportion that purchase a split-level p S = population proportion that purchase a split-level p A = population proportion that purchase an A-frame p A = population proportion that purchase an A-frame H 0 : p C = p L = p S = p A =.25 H a : The population proportions are not p C =.25, p L =.25, p S =.25, and p A =.25 p C =.25, p L =.25, p S =.25, and p A =.25

26 Slide © 2009 Thomson South-Western. All Rights Reserved n Rejection Rule 22 2 Do Not Reject H 0 Reject H 0 Multinomial Distribution Goodness of Fit Test With  =.05 and k - 1 = = 3 k - 1 = = 3 degrees of freedom degrees of freedom if p -value Reject H 0 if p -value

27 Slide © 2009 Thomson South-Western. All Rights Reserved n Expected Frequencies n Test Statistic Multinomial Distribution Goodness of Fit Test e 1 =.25(100) = 25 e 2 =.25(100) = 25 e 3 =.25(100) = 25 e 4 =.25(100) = 25 e 3 =.25(100) = 25 e 4 =.25(100) = 25 = = 10

28 Slide © 2009 Thomson South-Western. All Rights Reserved Multinomial Distribution Goodness of Fit Test n Conclusion Using the p -Value Approach The p -value < . We can reject the null hypothesis. The p -value < . We can reject the null hypothesis. Because  2 = 10 is between and , the Because  2 = 10 is between and , the area in the upper tail of the distribution is between area in the upper tail of the distribution is between.025 and and.01. Area in Upper Tail  2 Value (df = 3) Note: A precise p -value can be found using Note: A precise p -value can be found using Minitab or Excel. Minitab or Excel. Note: A precise p -value can be found using Note: A precise p -value can be found using Minitab or Excel. Minitab or Excel.

29 Slide © 2009 Thomson South-Western. All Rights Reserved n Conclusion Using the Critical Value Approach Multinomial Distribution Goodness of Fit Test We reject, at the.05 level of significance, We reject, at the.05 level of significance, the assumption that there is no home style preference.  2 = 10 > 7.815

30 Slide © 2009 Thomson South-Western. All Rights Reserved Test of Independence: Contingency Tables 1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, f ij, for each cell of the contingency table. frequency, f ij, for each cell of the contingency table. 3. Compute the expected frequency, e ij, for each cell.

31 Slide © 2009 Thomson South-Western. All Rights Reserved Test of Independence: Contingency Tables 5. Determine the rejection rule. Reject H 0 if p -value <  or. 4. Compute the test statistic. where  is the significance level and, with n rows and m columns, there are ( n - 1)( m - 1) degrees of freedom.

32 Slide © 2009 Thomson South-Western. All Rights Reserved Each home sold by Finger Lakes Homes can be Each home sold by Finger Lakes Homes can be classified according to price and to style. Finger Lakes’ manager would like to determine if the price of the home and the style of the home are independent variables. Contingency Table (Independence) Test n Example: Finger Lakes Homes (B)

33 Slide © 2009 Thomson South-Western. All Rights Reserved Price Colonial Log Split-Level A-Frame Price Colonial Log Split-Level A-Frame The number of homes sold for each model and The number of homes sold for each model and price for the past two years is shown below. For convenience, the price of the home is listed as either $99,000 or less or more than $99,000. > $99, < $99, Contingency Table (Independence) Test n Example: Finger Lakes Homes (B)

34 Slide © 2009 Thomson South-Western. All Rights Reserved n Hypotheses Contingency Table (Independence) Test H 0 : Price of the home is independent of the style of the home that is purchased style of the home that is purchased H a : Price of the home is not independent of the style of the home that is purchased style of the home that is purchased

35 Slide © 2009 Thomson South-Western. All Rights Reserved n Expected Frequencies Contingency Table (Independence) Test Price Colonial Log Split-Level A-Frame Total Price Colonial Log Split-Level A-Frame Total < $99K > $99K Total Total

36 Slide © 2009 Thomson South-Western. All Rights Reserved n Rejection Rule Contingency Table (Independence) Test With  =.05 and (2 - 1)(4 - 1) = 3 d.f., Reject H 0 if p -value = = n Test Statistic

37 Slide © 2009 Thomson South-Western. All Rights Reserved n Conclusion Using the p -Value Approach The p -value < . We can reject the null hypothesis. The p -value < . We can reject the null hypothesis. Because  2 = is between and 9.348, the Because  2 = is between and 9.348, the area in the upper tail of the distribution is between area in the upper tail of the distribution is between.05 and and.025. Area in Upper Tail  2 Value (df = 3) Contingency Table (Independence) Test Note: A precise p -value can be found using Note: A precise p -value can be found using Minitab or Excel. Minitab or Excel. Note: A precise p -value can be found using Note: A precise p -value can be found using Minitab or Excel. Minitab or Excel.

38 Slide © 2009 Thomson South-Western. All Rights Reserved n Conclusion Using the Critical Value Approach Contingency Table (Independence) Test We reject, at the.05 level of significance, We reject, at the.05 level of significance, the assumption that the price of the home is independent of the style of home that is purchased.  2 = > 7.815

39 Slide © 2009 Thomson South-Western. All Rights Reserved End of Chapter 11