A spin-valve-like magnetoresistance of an antiferromagnet- based tunnel junction Xavier Marti,

Slides:



Advertisements
Similar presentations
Spintronics: How spin can act on charge carriers and vice versa
Advertisements

Exchange Bias: Interface vs. Bulk Magnetism
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires.
SDW Induced Charge Stripe Structure in FeTe
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Charge Long-range magnetic order Implemented by Coupling Xavier Marti, 1.Metals:
Karel Výborný, Jan Zemen, Kamil Olejník, Petr Vašek, Miroslav Cukr, Vít Novák, Andrew Rushforth, R.P.Campion, C.T. Foxon, B.L. Gallagher, Tomáš Jungwirth.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
M.Czapkiewicz Department of Electronics, AGH University of Science and Technology, POLAND Calculations of interplay between anizotropy and coupling energy.
Spin transport in spin-orbit coupled bands
Making semiconductors magnetic: new materials properties, devices, and future NRI SWAN JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi.
Magnetic sensors and logic gates Ling Zhou EE698A.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Martin Lees Magnetic ordering in Ca 3 Co 2 O 6 Introduction: Why is Ca 3 Co 2 O 6 interesting? Zero field magnetic order and ordering in high field: Magnetization.
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
Ion-beam Sputtering Deposition Vacuum System Thickness Monitor Substrate Heater (1000°C) Kaufman Ion Gun Multiple Target Holder Ar Cathode Anode Glow Discharge.
School of Physics and Astronomy, University of Nottingham, UK
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Magnetic Data Storage. 5 nm Optimum Hard Disk Reading Head.
Observation of magnetic domains in LSMO thin films by XMCD-PEEM M. Oshima A, T. Taniuchi A, H. Kumigashira A, H. Yokoya B, T. Wakita C, H. Akinaga D, M.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Institute of Physics ASCR
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Regensburg, Curie point singularity in GaMnAs Institute of Physics of the Academy of Sciences of the Czech Republic Division of Solid State Physics.
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Magneto-transport anisotropy phenomena in GaMnAs and beyond Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Kevin Edmonds, Andrew.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Antiferromagnetic coulpling in spintronics Tomas Jungwirth Univ. of Nottingham, UK Institute of Physics ASCR & Charles Univ., Czech Rep. Hitachi and Univ.
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
Artifacts in the characterization of skin layers and ultrathin films by X-ray diffraction X. Marti, V. Holy Charles University, Prague P. Ferrer, T. Schulli.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
Spin-orbit coupling and spintronics in ferromagnetic semiconductors (and metals) Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Electric-field controlled semiconductor spintronic devices
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Introduction to Spintronics
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
What are the magnetic heterolayers good for Basic components of modern spintronic devices Conventional electronics has ignored the spin of the electron.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Dilute moment ferromagnetic semicinductors for spintronics
Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system
ZERO-MAGNETISATION SPIN-SOURCES
Presentation transcript:

A spin-valve-like magnetoresistance of an antiferromagnet- based tunnel junction Xavier Marti, Special thanks to : Josep Fontcuberta, Helena Reichlova, Pete Wadley, Joerg Wunderlich, Tomas Jungwirth Xavier Marti J. Zemen, V. Novak, B.G. Park, H. Reichlová, K. Olejnik, M. Cukr, O. Stelmakhovych, V. Holy, P. Nemec, P. Horodyska, E. Rozkotova, N. Tesarova, A. Shick, J. Masek, F. Maca, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, R. Campion, T. Foxon, B. Gallagher, P. Wadley, K. Edmonds, A. Rushforth, D. Petti, E. Albisetti, R. Bertacco, I.Fina, F. Sanchez, J. Fontcuberta, J. Wunderlich, T. Jungwirth MPI Halle14:30

Xavier Marti, Outline 1.Tunnel Anisotropic-Magnetoresistance. Strategy: large change in DOS(E F ) 2.Sample characterization: substrate/Py/IrMn/MgO/Pt layers 3.Spin-valve-like magnetoresistance IrMn/MgO/Pt 4.New strategy: large change of chemical potential at E F 5.I-II-V antiferromagnetic semiconductor: tetragonal LiMnAs/InAs 6.I-II-V antiferromagnetic semimetals: tetragonal CuMnAs/GaAs

FM insulator [AFM]

No-Mag FM insulator

Co Courtesy of Jan Zemen

Co Courtesy of Jan Zemen

No-Mag FM insulator

Park et al., PRL 100, (2008) Co: 0.1 %

Park et al., PRL 100, (2008) Co: 0.1 %

Park et al., PRL 100, (2008) CoPt: 10 % Co: 0.1 %

CoPtCo Courtesy of Jan Zemen

CoPtCo Courtesy of Jan Zemen

CoPtCo Courtesy of Jan Zemen

CoPtCo PtCo Park et al., PRL 100, (2008) CoPt: 10 % TAMR: Uniaxial anisotropy

CoPtCo PtCo Park et al., PRL 100, (2008) CoPt: 10 % TAMR: Uniaxial anisotropy M S-O M Schick et al., PRB 81, (2010)

18 spontaneous moment spin-orbit coupling Ta/Ru/Ta MnIr MgO Pt NiFe Antiferromagnetic Bimetallic alloy IrMn is already present in TMR structure Intention is to remove NiFe from the stack and place IrMn at the barrier Schick et al., PRB 81, (2010)

CoPt: 10 % Co: 0.1 % IrMn: ? %

Q: How to rotate AFM-coupled staggered moments?

W.H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328

Q: How to rotate AFM-coupled staggered moments? D. Mauri, J. Appl. Phys. 62 (1987) 3047

W.H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328 K. Takano, Phys. Rev. Lett. 79 (1997) 1130 D. Mauri, J. Appl. Phys. 62 (1987) 3047 M. Kiwi, EPL 48 (1999) 573 A.P. Malozemoff, Phys. Rev. B 35 (1987) 3679 P. Miltenyi, Phys. Rev. Lett. 84 (2000) 4224 N.C. Koon, Phys. Rev. Lett. 78 (1997) 4865 M. Kiwi, EPL 48 (1999) 573 F. Radu, J. Phys.: Condens. Matter 18, L29 (2006) Inspired by F. Radu PhD Thesis and Josep Nogues Talk (Prague 2012) (Not an exhaustive list)

Ta/Ru/Ta MnIr MgO Pt NiFe From conventional FM-FM to AFM-based tunnel junction Park et al., Nature Mater. 10, 347 (2011) US patent

Ta/Ru/Ta MnIr MgO Pt NiFe From conventional FM-FM to AFM-based tunnel junction Park et al., Nature Mater. 10, 347 (2011) US patent

Ta/Ru/Ta NiFe MnIr MgO Pt From conventional FM-FM to AFM-based tunnel junction Park et al., Nature Mater. 10, 347 (2011) US patent

Ta/Ru/Ta NiFe MnIr MgO Pt From conventional FM-FM to AFM-based tunnel junction DOS(2) AFM FM DOS(1) Park et al., Nature Mater. 10, 347 (2011) US patent

 Structural and magnetic characterization of the samples (

From X-ray diffraction studies we learn that: 1.IrMn is cubic (c/a = 1) [1] 2.IrMn is in “disordered” gamma-phase [2] 3.IrMn is in-plane not ordered [3] 4.IrMn is out-of-plane textured, (111) [1-3] 5.Ir content is close to 30% 6.Grains are ~10 nm 7.Magnetic structure is likely Q IrMn(111) QxQx QyQy Marti et al., PRL 2012

From X-ray diffraction studies we learn that: 1.IrMn is cubic (c/a = 1) [1] 2.IrMn is in “disordered” gamma-phase [2] 3.IrMn is in-plane not ordered [3] 4.IrMn is out-of-plane textured, (111) [1-3] 5.Ir content is close to 30% 6.Grains are ~10 nm 7.Magnetic structure is likely Q IrMn(111) QxQx QyQy Marti et al., PRL 2012

GS = 1/0.01 = 100 A ~ 10 nm Marti et al., PRL 2012

33 IrMn grain size ~ 10 nm Ru Ta Oxide Ta NiFe MgO IrMn

1 2 3 IrMn(111) QxQx QyQy From X-ray diffraction studies we learn that: 1.IrMn is cubic (c/a = 1) [1] 2.IrMn is in “disordered” gamma-phase [2] 3.IrMn is in-plane not ordered [3] 4.IrMn is out-of-plane textured, (111) [1-3] 5.Ir content is close to 30% 6.Grains are ~10 nm 7.Magnetic structure is likely Q3 Marti et al., PRL 2012

PHYSICAL REVIEW B 67, (2003) The magnetic structure is likely to be θ ≈ deg, so-called Q3 structure A C All spins contained in the (111) plane B Py Mn L 2,3 XMCD Net magnetic moment found in unpinned Mn DLS I06

PHYSICAL REVIEW B 67, (2003) The magnetic structure is likely to be θ ≈ deg, so-called Q3 structure A C All spins contained in the (111) plane B Py Net magnetic moment found in unpinned Mn Only at the FM/AFM interface DLS I06

SQUID magnetometer F. Radu, S-G model M-B model Marti et al., PRL 2012

Ta/Ru/Ta NiFe MnIr MgO Pt From conventional FM-FM to AFM-based tunnel junction DOS(2) AFM FM DOS(1) Park et al., Nature Mater. 10, 347 (2011) US patent ) TAMR SQUID Marti et al., PRL 2012

3 mT 50 mT B B Park et al., Nature Mater. 10, 347 (2011) US patent

Marti et al., PRL 2012 AFM TAMR : electrical reading of AFM moments 10K

Marti et al., PRL 2012 AFM TAMR : electrical reading of AFM moments 10K

42 AFM TAMR : irreversibility Park et al., Nature Mater. 10, 347 (2011) US patent CoPt: 10 % Co: 0.1 % IrMn: 100 %

AFM TAMR: control sample without the AFM Park et al., Nature Mater. 10, 347 (2011) US patent

AFM TAMR : either uniaxial (EB-induced) or unidirectional anisotropy? At very low temperatures signal is strongly unidirectional… H eb >>1

45 AFM TAMR : electrical reading of AFM moments R + ≠ R - R + = R - Marti et al., PRL 2012 Less TAMR = Less difference between initial and final states

46 Marti et al, AFM TAMR : electrical reading of AFM moments R + ≠ R - R + = R - Marti et al., PRL 2012 Less TAMR = Less difference between initial and final states

SQUID magnetometer Marti et al., PRL 2012 K AF (T  300K)  0 J EB (T  300K)  0 If K AF is low it is easier to rotate, but if J eb is also low, coupling is also low, and the AFM-rotation smaller

SQUID magnetometer Marti et al., PRL 2012 K AF (T  300K)  0 J EB (T  300K)  0 If K AF is low it is easier to rotate, but if J eb is also low, coupling is also low, and the AFM-rotation smaller B(T) 300 K: The two “metastable” states are separated less than K B T

Xavier Marti, Outline 1.Tunnel Anisotropic-Magnetoresistance. Strategy: large change in DOS(E F ) 2.Sample characterization: substrate/Py/IrMn/MgO/Pt layers 3.Spin-valve-like magnetoresistance IrMn/MgO/Pt 4.New strategy: large change of chemical potential at E F 5.I-II-V antiferromagnetic semiconductor: tetragonal LiMnAs/InAs 6.I-II-V antiferromagnetic semimetals: tetragonal CuMnAs/GaAs

Energy Density of states EFEF Tunnel transport  large change in DOS(EF) Charge control  large change in chemical potential

insulator Silicon transistor Energy EFEF Density of states

insulator Silicon transistor Energy EFEF Density of states

B ptp B 90 B0B0 I

Spin-dependent chemical potential shift in capacitively coupled gate instead of channel Ciccarelli, Zarbo, Irvine, Campion, Gallagher, Wunderlich, Jungwirth, Ferguson preprint ‘12

Common approach to spin-transistorInverted approach to spin-transistor

Doping Temperature Xavier Marti, GaAs (Ga,Mn)AsMnAs Ferromagnetic Semiconductor

III-VFM T C (K)AFM T N (K) FeN100 FeP115 FeAs77 FeSb GdN72 GdP15 GdAs19 GdSb27 II-VIFM T C (K)AFM T N (K) MnO122 MnS152 MnSe173 MnTe323 EuO67 EuS16 EuSe5 EuTe10 Xavier Marti, Intrinsic III-V and II-VI semiconductors Maca et al., JMMM 324, 1606 (2012)

Energy EFEF DOS

Crystal and magnetic structure: Bronger et al, Z. anorg. allg. Chem. 539, 175 (1986) THEORY Semiconductor with huge spin-orbit coupling Xavier Marti,

InAs 4.27A 4.28A THIN FILM EPILAYERS V. Novak, et al., J. Cryst. Growth 323, 348 (2011)

log(intensity) InAs 4.27A 4.28A THIN FILM EPILAYERS

LiMnAs has a bandgap InAs LiMnAs 4.27A 4.28A I. Wijnheijmer et al, Appl. Phys. Lett. In press dI/dV map

Is LiMnAs the only choice available? Xavier Marti, I

Xavier Marti, V. M. Ryzhkovsky, et al., Inorg. Mater (1995) A.E. Austin, et al., J. Appl. Phys (1962) TNTN RT CuMnAs, Mn 2 As prototype Courtesy of J. Zelezný

GaAs(004) GaAs(002) CuMnAs(001) CuMnAs(002) CuMnAs(003) CuMnAs(004) 6.30 Å (a) (b) (c) (d)

XRD Neutron d-spacing (Å)

67 Summary TAMR in FM metalsTAMR in AF bimetallic alloys Park et al., PRL 100, (2008)Schick et al., PRB 81, (2010) Spin-valve-like magnetoresistance of an antiferromagnetic-based tunnel junction Park et al., Nature Mater. 10, 347 (2011) US patent Electrical measurement of the AFM moments Marti et al, submitted 2011

Thanks for your attention !!! Xavier Marti, Special thanks to : Josep Fontcuberta, Helena Reichlova, Pete Wadley, Joerg Wunderlich, Tomas Jungwirth Xavier Marti V. Novak, B.G. Park, H. Reichlová, K. Olejnik, M. Cukr, O. Stelmakhovych, V. Holy, P. Nemec, P. Horodyska, E. Rozkotova, N. Tesarova, A. Shick, J. Masek, F. Maca, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, R. Campion, T. Foxon, B. Gallagher, P. Wadley, K. Edmonds, A. Rushforth, D. Petti, E. Albisetti, R. Bertacco, I.Fina, F. Sanchez, J. Fontcuberta, J. Wunderlich, T. Jungwirth MPI Halle14:30