GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.

Slides:



Advertisements
Similar presentations
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Advertisements

Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Beta decay and Structure of Exotic Nuclei near 78 Ni Alexander Lisetskiy NSCL,JINA,MSU.
Measurement of 58 Co Gamow-Teller Strength via (t, 3 He) Arthur L. Cole National Superconducting Cyclotron Laboratory, Michigan State University ref: ESA.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.
University of Surrey-23/11/2010. Symmetries and Conservation Laws Introduction of Isospin Charge Exchange Reactions Beta Decay Combined Analysis Recent.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Nuclear Level Densities Edwards Accelerator Laboratory Steven M. Grimes Ohio University Athens, Ohio.
58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t)
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
FRANK LABORATORY OF NEUTRON PHYSICS ION BEAM ANALYSIS STANCIU-OPREAN LIGIA SUPERVISOR DR. KOBZEV ALEXANDER.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
A Hybrid Configuration Mixing model with applications to odd mass nuclei near closed shells G. Colò The future of multi-reference DFT, Warsaw, June 26.
N~Z studies with Gretina and neutron detectors W. Reviol, D. Rudolph, D.G. Sarantites, C.J. Chiara, D. Seweryniak Washington U. / Lund U. / U. of Maryland.
Ohio University: A.V. Voinov, S.M. Grimes, C.R.Brune, T. Massey, B.M. Oginni, A.Schiller, Oslo University: M. Guttormsen, A.C. Larsen, S.Siem, N.U.H. Syed.
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
Experimental studies around N=28… What’s next? ESNT – 4-6/02/2008 Saclay 1)Various experimental approaches for one physics case 2) From data to theoretical.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Low-lying states in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka UniversityH. Fujimura, M. Fujiwara, K. Hara, K. Hatanaka,
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
The concept of compound nuclear reaction: a+B  C  d+F The particle transmission coefficients T are usually known from cross sections of inverse reactions.
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
High-Resolution Spectroscopy in charge- exchange reactions with rare-isotope beams Applications to weak-reaction rates for astrophysics Remco G.T. Zegers.
1 Isospin symmetry. Beta-decay studies of Tz=-1 nuclei at Rising. B. Rubio for the Valencia-Osaka-Surrey-Leuven-Santiago-GSI Istambul-Lund-Legnaro Collaboration.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Isospin Mixing And In-beam Study Of 56 Co Non-yrast States At MLL/Miniball. Motivation And First Glance On The Results Of The Experiment Ana Montaner Pizá.
g-ray spectroscopy of the sd-shell hypernuclei
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
SFB 634 *Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2 Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering.
Technical solutions for N=Z Physics David Jenkins.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
Neutron production and iodide transmutation studies using intensive beam of Dubna Phasotron Mitja Majerle Nuclear Physics Institute of CAS Řež, Czech republic.
Experimental Reconstruction of Primary Hot Fragment at Fermi Energy Heavy Ion collisions R. Wada, W. Lin, Z. Chen IMP, China – in JBN group.
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
Giant Monopole Resonance
Merve DOĞAN İstanbul University
gamma-transmission coefficients are most uncertain values !!!
Search for unbound excited states of proton rich nuclei
High-resolution Studies of Charge Exchange on 47,48Ti in comparison with Shell Model Calculations Ela Ganioğlu Istanbul University E. Ganioglu, Stockholm.
In-beam and isomer spectroscopy in the third island of inversion at EXOGAM+VAMOS E.Clément (GANIL)
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Isospin Symmetry test on the semimagic 44Cr
Role of Pions in Nuclei and Experimental Characteristics
Lanzhou.
High resolution study of TZ= +3 → +2 Gamow-Teller transitions in the
Unexpected nonquenching of the isoscalar spin-M1 transitions
Neutrino-Nucleus Reactions and Nucleosynthesis
The need for cross section measurements for neutron-induced reactions
Presentation transcript:

GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin symmetry  CE reaction High-resolution ( 3 He,t) CE reaction and analogous  -decay for the study of GT strengths Yoshitaka FUJITA (Osaka Spin 2006 / Oct. 02, 2006

Supernova Cycle

mainly by  K.L &G.M-P Rev.Mod.Phys.75(’04)819 (A,Z)=nuclei in the Cr, Mn, Fe, Co, Ni region pf -shell Nuclei ! Crucial Weak Processes during the Core Collapse

58 Ni(p, n) 58 Cu E p = 160 MeV 58 Ni( 3 He, t) 58 Cu E = 140 MeV/u Counts Excitation Energy (MeV) Comparison of (p, n) and ( 3 He,t) spectra Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., Dr. Th. & PRC

Grand Raiden Spectrometer Large Angle Spectrometer 3 He beam ( 3 He, t) reaction

RCNP Ring Cyclotron Good quality 3 He beam (140 MeV/nucleon)

Matching Techniques

B(GT) derivation

**Isospin Symmetry Structure in Mass A Nuclei (Isobars)

T=1 system Mg 14 A=26 system Coulomb Energy: important Al Si 12

26 Mg Z=12, N=14 26 Al Z=13, N=13 26 Si Z=14, N=12 T=1 symmetry : Structures & Transitions

B(GT) values from Symmetry Transitions (A=26) Y. Fujita et al., PRC 67 (‘03)

Supernova and Neutron Star

High resolution 54 Fe( 3 He,t) spectrum T. Adachi et al. Target nuclei under study : T 0 =1 46 Ti, 50 Cr, 54 Fe, 58 Ni T 0 =2 48 Ti, 52 Cr, 56 Fe, 60 Ni T 0 =3 50 Ti, 62 Ni T 0 =4 64 Ni

**Derivation of “absolute” B(GT) values

26 Mg Z=12, N=14 26 Al Z=13, N=13 26 Si Z=14, N=12 23 Na Z=11, N=12 23 Mg Z=12, N=11 T=1 symmetry Connection between Charge Exchange &  decay T=1/2 symmetry 0 +  1 +

26 Mg Z=12, N=14 26 Al Z=13, N=13 26 Si Z=14, N=12 23 Na Z=11, N=12 23 Mg Z=12, N=11 T=1 symmetry Connection between Charge Exchange &  decay T=1/2 symmetry 0 +  1 + not enough  -decay data not for Ti, Cr, Fe region

Mirror nuclei 46 Ti 50 Cr 54 Fe 50 Fe 54 Ni 46 Cr ß+ ( 3 He,t) N=Z T=1 Isospin Symmetry in pf-shell Nuclei Ni Fe 28 T z =0 T z =1 T z =-1 Leuven Valencia Surrey Osaka by B. Rubio

Isospin Symmetry Transitions: 50 Cr( 3 He,t)  50 Mn   -decay 50 Fe Q EC =8.152(61) MeV T 1/2 =0.155(11) s (Z,N)=(24,26)(25,25)(26,24)

50 Cr( 3 He,t) 50 Mn

50 Fe  -decay measurement 50 Fe  + decay 0 + Q EC =8.152(61) MeV T 1/2 =0.155(11) s

**Reconstruction of  decay from ( 3 He,t) ---assuming isospin symmetry ---

Simulation of  -decay spectrum  -decay feeding ratios are deduced !

Absolute B(GT) values -via reconstruction of  -decay spectrum-  -decay experiment T 1/2 =0.155(11) s New value B(GT)=0.50(13) *20% smaller than the  -decay: 0.60(16) Absolute intensity: B(GT) Y. Fujita et al. PRL 95 (2005) B(F)=N-Z Relative feeding intensity from ( 3 He,t) t i =partial half-life

Mirror nuclei 46 Ti 50 Cr 54 Fe 50 Fe 54 Ni 46 Cr ß+ ( 3 He,t) N=Z T=1 Isospin Symmetry in pf-shell Nuclei Ni Fe 28 T z =0 T z =1 T z =-1 Leuven Valencia Surrey Osaka by B. Rubio

Mirror nuclei 48V48V 52 Mn 56 Co 50 Co 56 Cu 48 Mn ++ ( 3 He,t) N=Z T = 2 Isospin Symmetry in pf-shell Nuclei Ni Cr 28 T z =0 T z =1 T z =-1 52 Ni T z =2 T z =-2 52 Cr 48 Cr 52 Fe 56 Ni 56 Fe 56 Zn 48 Ti 48 Fe B. Rubio, Y. Fujita

Mirror nuclei 48V48V 52 Mn 56 Co 50 Co 56 Cu 48 Mn ++ ( 3 He,t) N=Z T = 2 Isospin Symmetry in pf-shell Nuclei Ni Cr 28 T z =0 T z =1 T z =-1 52 Ni T z =2 T z =-2 52 Cr 48 Cr 52 Fe 56 Ni 56 Fe 56 Zn 48 Ti 48 Fe B. Rubio, Y. Fujita Even T 1/2 ’s are uncertain!

Comparison: (p, n) and ( 3 He,t) IAS g.s. 52 Cr(p, n) 52 Mn Ep =120 MeV

 -decay Half-life T 1/2 -via reconstruction of  -decay spectrum- abs. B(GT) distribution from ( 3 He,t) B(F)=N-Z

52 Ni  -decay Half-life T1/2  -decay exp. (PRC 49, 2440, ‘94) T 1/2 = 38 (5) ms (total proton counts: ~160) abs. B(GT) distribution from 52 Cr( 3 He,t) Q EC = MeV B(F)=N-Z Isospin symmetry estimation T 1/2 = 56 (10) ms SM cal. (PRC 57, 2316, ’98) T 1/2 = 50 ms Mass formula (T. Tachibana et al.) T 1/2 = 35 ms

Summary * Isospin Symmetry was introduced * High resolution of the ( 3 He,t) reaction allowed the comparison of analogous transitions * Properties of proton-rich “far-stability nuclei” is deduced by the combined analysis of  -decay and ( 3 He,t) reaction --- B(GT), Half-life T 1/2 ---