The core shift measurements for two-sided jets affected by Free-Free absorption using VLBA Takafumi Haga (SOKENDAI/ISAS) Collaborators Akihiro Doi, Yasuhiro.

Slides:



Advertisements
Similar presentations
Imaging nearby AGN at ultra high resolution with RadioAstron Tuomas Savolainen Aalto University Metsähovi Radio Observatory Max-Planck-Institut für Radioastronomie.
Advertisements

HI absorption around the nucleus of an active galaxy NGC1052 Yun-da Li Supervisor : Sawada-Satoh, Satoko Shen, Zhiqiang August 28, 2003 ASIAA summer student.
Probing the Radio Counterpart of Gamma-ray Flaring Region in 3C 84 Hiroshi Nagai (National Astronomical Observatory of Japan) In collaboration with Monica.
 MOLECULAR GAS IN THE CORES OF AGN Violette Impellizzeri (NRAO) Alan Roy (MPIfR), Christian Henkel (MPIfR)
JVN observations of (NLS1s and) BAL quasars 2009Mar18-20 EAVN-WS Seoul Akihiro Doi ( 土居 明広 ) ( ASTRO-G/JAXA ) Keiichi Asada, Kenta Fujisawa, Noriyuki.
Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF EVN observations of M87 as follow-up on a recent.
Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF The jet and core in M 87 In collaboration with :
Mapping HI absorption at z=0.026 against a resolved background CSO Andy Biggs, Martin Zwaan, Jochen Liske European Southern Observatory Frank Briggs Australian.
Radio properties of BAL quasars Takayuki HAYASHI (Univ. Tokyo, NAOJ/VLBI) Akihiro Doi (ISAS/JAXA) Hiroshi Nagai (ALMA/NAOJ)
M87 - WalkerVSOP-2 Symposium, Sagamihara, Japan Dec IMAGING A JET BASE - PROSPECTS WITH M87 R. Craig Walker NRAO Collaborators: Chun Ly (UCLA - was.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
The Transient Universe: AY 250 Spring 2007 Sagittarius A* Geoff Bower.
VLBI Imaging of a High Luminosity X-ray Hotspot Leith Godfrey Research School of Astronomy & Astrophysics Australian National University Geoff Bicknell,
Galaxies with Active Nuclei Chapter 17. You can imagine galaxies rotating slowly and quietly making new stars as the eons pass, but the nuclei of some.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
Jets in Low Power Compact Radio Galaxies Marcello Giroletti Department of Astronomy, University of Bologna INAF Institute of Radio Astronomy & G. Giovannini.
The Long, Bright Extended X-ray Jet of OJ287 Alan Marscher & Svetlana Jorstad Boston University Research Web Page:
Active Galaxies PHYS390 Astrophysics Professor Lee Carkner Lecture 22.
Sites of Particle Acceleration in Quasar Jets Alan Marscher Boston University Research Web Page:
Active Galactic Nuclei Ay 16, April 8, AGN DEFINITION PROPERTIES GRAVITATIONAL LENSES BLACK HOLES MODELS.
Multi-Wavelength Time Variability of Active Galactic Nuclei Ritaban Chatterjee Advisor: Prof. Alan P. Marscher Collaborators: Svetlana Jorstad (B.U.),
Alison Peck, Synthesis Imaging Summer School, 20 June 2002 Spectral Line VLBI Alison Peck SAO/SMA Project.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Deep, wide-field global VLBI observations of HDF-N Deep, wide-field global VLBI observations of HDF-N Seungyoup Chi Kapteyn Institute (RuG) / JIVE Collaborators.
VSOP-2 Detection of Faraday screen? Inoue M., Asada K.*, and Nagai H. National Astronomical Obs. of Japan * Institute of Space and Astronautical Science.
The quasar PKS : Direct evidence for a changing orientation of the central engine. John Wardle (Brandeis), Dan Homan (NRAO), C. C. Cheung & Dave.
Interaction in the NGC 3079 group Nebiha Shafi University of Witwatersrand and HartRAO Supervisors: Prof. Roy Booth (HartRAO) Dr. Raffaella Morganti Dr.
Imaging Compact Supermassive Binary Black Holes with VLBI G. B. Taylor (UNM), C. Rodriguez (UNM), R. T. Zavala (USNO) A. B. Peck (CfA), L. K. Pollack (UCSC),
Search for Binary Black Holes in Galactic Nuclei Hiroshi SUDOU (Gifu Univ., Japan) EAVN Workshop, Seoul, 2009 March 19.
The jet of Mrk 501 from millions of Schwarzschild radii down to a few hundreds Marcello Giroletti INAF Istituto di Radioastronomia and G. Giovannini, G.
Low Power Compact radio galaxies at high angular resolution Marcello Giroletti INAF Istituto di Radioastronomia & G. Giovannini (UniBO, IRA) G. B. Taylor.
The Future of Direct Supermassive Black Hole Mass Measurements Dan Batcheldor Rochester Institute of Technology - The Role of SMBHs measurements. - Current.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
3C120 R. Craig Walker National Radio Astronomy Observatory Socorro, NM Collaborators: J.M. Benson, S.C. Unwin, M.B. Lystrup, T.R.Hunter, G. Pilbratt, P.E.
Ultra-high Resolution Space-VLBI Imaging of Jets in Nearby AGN Tuomas Savolainen Aalto University Metsähovi Radio Observatory, Finland Max-Planck-Institut.
Phase Referencing Using More Than One Calibrator Ed Fomalont (NRAO)
The Environs of Massive Black Holes and Their Relativistic Jets Greg Taylor NRAO Albuquerque AAS, 2002 June 5.
Young Radio Sources associated with Broad Absorption Line Quasars
AGN Science with SKA Motoki Kino (NAOJ) On behalf of SKA-Japan AGN sub-WG Japan-SKA workshop (Nov. 5 th 2010, NAOJ) (C) J. McKean Cygnus A at 240 MHz with.
Kashi1 Radio continuum observations of the Sombrero galaxy NGC4594 (M104) and other edge-on spirals Marita Krause MPIfR, Bonn Michael Dumke ESO,
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Gabriele Giovannini Marcello Giroletti Gregory B. Taylor Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia, INAF Bologna Dept.
Multi-frequency Phase Referencing VLBI Observation - Phase Referenced Image - Tae Hyun Jung, Bong Won Sohn, Hideyuki Kobayashi, Tetsuo Sasao, Tomoya Hirota,
Active Galaxies and Supermassive Black Holes Chapter 17.
Marcello Giroletti INAF Istituto di Radioastronomia and
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
Quasi-Periodicity in the Parsec-Scale Jet of the Quasar 3C345 - A High Resolution Study using VSOP and VLBA - In collaboration with: J.A. Zensus A. Witzel.
Dependence of the Integrated Faraday Rotations on Total Flux Density in Radio Sources Chen Y.J, Shen Z.-Q.
Mapping Magnetic Field Profiles Along AGN Jets Using Multi-Wavelength VLBI Data Mark McCann, Denise Gabuzda Department of Physics, University College Cork,
What does Ammonia trace in Egg Nebula Pao-Jan Chiu Pao-Jan Chiu With Jeremy Lim
Mapping the U.S. Scientific Future in VLBI ftp.aoc.nrao.edu/pub/VLBIfuture VLBI Future Committee: Shep.
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
William Peterson & Robert Mutel University of Iowa Miller Goss NRAO M. Gudel ETH, Zurich 1.
Cosmic Masers Chris Phillips CSIRO / ATNF. What is a Maser? Microwave Amplification by Stimulated Emission of Radiation Microwave version of a LASER Occur.
Lecture 16 Measurement of masses of SMBHs: Sphere of influence of a SMBH Gas and stellar dynamics, maser disks Stellar proper motions Mass vs velocity.
About JVN about JVN Status Status Results Results Future plans Future plans Japanese VLBI Network (JVN): recent results and future plans for EAVN Kenta.
The Atomic and Molecular Environments of AGN Alison Peck SAO/SMA Project.
Core shift measurement of the AGN in NGC 4261
A VLBA MOVIE OF THE JET LAUNCH REGION IN M87
Star Formation & The Galactic Center
Radio Galaxies Part 5.
NRAO-CV Lunch Talk June 2017
Frequency-dependent core shift
The origin nuclear X-ray emission in the nuclei of radio galaxy-FR Is
Radio Observations of Nearby HST BL Lacs
Galaxies With Active Nuclei
Compact radio jets and nuclear regions in galaxies
Presentation transcript:

The core shift measurements for two-sided jets affected by Free-Free absorption using VLBA Takafumi Haga (SOKENDAI/ISAS) Collaborators Akihiro Doi, Yasuhiro Murata (ISAS/JAXA), Hiroshi Sudo (Gifu Univ.), Seiji Kameno (Kagoshima Univ.), Kazuhiro Hada (IRA/INAF), Hiroshi Nagai (NAOJ)

Outline Introduction of Our project – Core shift measurements for two-sided jet Where is the position of the black hole? – Our Targets NGC 4261, 3C 84, Cen A, Cyg A Results of NGC 4261 – The black hole position – The interpretation of the counter jet core shift

Radio core at each frequency Jet Radio core : Peak intensity at the upstream of a jet Core position – The base of jet is absorbed ( It’s stronger at lower frequency.) – Core positions seem to be different at each frequency ( = core shift ) – Core position ≠ position of the jet base Opacity effect Jet in VLBI image ↑Black hole (and accretion disk )?

The case of M 87 ( Hada+2011 Nature) 4  Accurate determination of the position of the jet base in M 87 (14–23) ± 4 Rs away from 43 GHz radio core. The higher frequency is, the closer core is to the jet base ⇒ core )→ jet base Jet base = BH position ?

One-sided jet cases core ν → ∞ ) : lower limit of distance to BH Two-sided jet cases – can limit range of BH position unambiguously 43GHz Core shift model :10 Rs (Hada+2011) BH of M 87 case Standing shock model :10 5 Rs ( Marscher+2006) BH of BL Lac case Visible Jet

The goal of our research Measurements of counter jet core shift determine true position of BH Jet Core shift BH Counter Jet Core shift BH

Our targets with two sided jet 3C 84 Distance:70 Mpc Distance:230 Mpc Cygnus A Centaurs A Distance: 3.6 Mpc NGC 4261 Distance : 30 Mpc

NGC 4261 FR-I radio galaxy 31.6 Mpc (z=0.0075) − 1 mas ~ 0.15 pc (Tonry +2001) BH : 4.9×10 8 M sun (Ferrarese ) Viewing angle : θ = 63 ± 3° (Pinner +2001) Intensity gap – The obscuration by disk Edge-on, geometrically-thin, cold disk (10 4 K) 8 Kpc scale jet (VLA) 30 kpc Gas &dust Disk (HST) 100 pc 8 GHz Approaching Jet (AJ) Counter Jet (CJ) pc scale Jet 8GHz ) Jones Gap

Observational summary 43 GHz resolution beam size 〜 0.15 [mas] 〜 0.04 pc 〜 1000 Rs 9 TelescopeVLBA (10 antennas) Observation modePhase-referencing Frequency [GHz]1.4/2.3/5.0/8.4/15/22/43 Date28 th June, 2003 (15, 22, 43 GHz) 5 th July, 2003 ( 1, 2, 5, 8 GHz) CalibratorJ ° NGC 4261 J R.A. Decl.

Continuum maps and core shift measurements Frequency [GHz] Relative position form 43 G core [mas] Relative position from 43GHz core [ mas] We can measure C-jet’s core shift for the first time 10 ● :jet core ● :C-jet core

Core shift fitting on approaching jet Valueerror Ω-8.42± 0.86 k1.22± 0.06 c0.082± Frequency [GHz] Relative position form 43 G core [mas] Parameter c was determined to be 82 ± 16 μas (~310 ± 60 Rs) from 43 GHz core ・ < c < ・ c ν→∞) = BH position

Spectral index map (S ν ∝ ν α ) Overlay maps at adjacent frequency – Considered core shift – Using same beam α > 2.5 (inside heavy line) – 1-2, 5-8, 8-15 GHz 1-2 GHz 5-8 GHz ν1ν1 ν2ν2

core shift is caused by SSA or/and FFA Absorption at low frequency – Jet itself : synchrotron self-absorption (SSA) – Obscuration of accretion matter :free-free absorption (FFA) α SSA ≦ 2.5 The spectral difference between SSA and FFA

Pure SSA model The difference of A-Jet / C-Jet – beaming factor δ (β, θ) β : 0.46, θ: 63° – Ω CJ < Ω AJ Model – 5–8 GHz : lager than pure SSA expectation – Others : as expectation from pure SSA core shift SSA Approaching Jet Counter Jet

SSA + FFA model SSA jet + FFA disk – 5, 8 GHz: affected by FFA disk – Other : consistent with pure SSA Limited regions within 0.4 pc ν ≦ 2 GHz : outside disk (low density) ν ≧ 15 GHz : too high temperature : frequency dependence τ FFA : FFA opacity, n e : electron density, T : temperature L : path length in absorbers observers FFA Disk Jet

Summary We measured core shift of NGC 4261 not only on main jet side but also counter jet. – The jet base practically represent the BH position. – The BH position of NGC 4261 is determined unambiguously. It is located within 82 ± 16 μas (310± 60 Rs) from 43 GHz core C-Jet core shift can’t be interpreted as pure SSA core shift. – Contribution of FFA disk

3C 84 phase referencing observation 1.6 GHz2.3 GHz5.0 GHz8.4 GHz 12 GHz 15 GHz 22 GHz Calibrator: J P.A. –55° Target Calibrator 1.28° Decl. R.A. Going on analysis

Thank you for your attention!

Observational summary TelescopeVLBA (10 antennas) Observation modePhase-referencing Date 24 th January, 2013 Freq. [GHz]OST [min]Pol.BW [MHz] 1.615LL/RR RR* LL/RR RR* LL/RR LL/RR LL/RR LL/RR256 3C 84 (NGC 1275) – Distance: 70 Mpc 1mas 〜 0.35 pc New Mark 5C system – Data rate : 2Gbps 8 GHZ

Spectral index maps 8-12 GHz12-15 GHz

Error budget (μas) 21 Frequency [GHz] Beam size/ SNR Ionosphere Troposphere13 Core identification Earth orientation Antenna position Apriori Source coordinates Total error (RSS) Observation & Analysis