Linear spectropolarimetry Jorick Vink (Armagh Observatory)

Slides:



Advertisements
Similar presentations
Accretion and Variability in T Tauri Disks James Muzerolle.
Advertisements

Dust emission from Haebes: Disks and Envelopes A. Miroshnichenko (Pulkovo/Toledo) Z. Ivezic (Princeton) D. Vinkovic (UK) M. Elitzur (UK) ApJ 475, L41 (1997;
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
X-ray pulsars in wind-fed accretion systems 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
The Deaths of Stars Chapter 13. The End of a Star’s Life When all the nuclear fuel in a star is used up, gravity will win over pressure and the star will.
AS 4002 Star Formation & Plasma Astrophysics Protostellar spin evolution Solve equation of motion numerically Use a stellar evolution code (Eggleton 1992)
Getting to Eddington and beyond in AGN and binaries! Chris Done University of Durham.
Metallicity Dependent Wolf-Rayet winds Metallicity Dependent Wolf-Rayet winds PAUL CROWTHER.
 Wolf-Rayet Stars & the Luminous Blue Variables 2014/11/12 Wednesday Luqian Wang.
The Polarization of Achernar (α Eri, B3Vpe) David McDavid Department of Astronomy University of Virginia.
Life and Evolution of a Massive Star M ~ 25 M Sun.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Black holes: Introduction. 2 Main general surveys astro-ph/ Neven Bilic BH phenomenology astro-ph/ Thomas W. Baumgarte BHs: from speculations.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Pre-Main Sequence Stars PHYS390 (Astrophysics) Professor Lee Carkner Lecture 13.
T Tauri Stars: An Overview Colette Salyk Ge132. What is a T Tauri star? 1st Answer: Observational –Hydrogen Balmer and Ca II H and K emission –Often emission.
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy II: X-ray Binaries Geoff Bower.
J.S. Clark 1, I. Negueruela 2, P.A. Crowther 3, S. Goodwin 4 and L. J. Hadfield 3 1 University College London, 2 Universidad de Alicante, 3 University.
Andrea Dupree SAO/CfA New England Space Science Consortium (NESSC) March 1, 2006 Some Stellar Problems of Interest to Solar Physics  Global properties.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
Death of Stars I Physics 113 Goderya Chapter(s): 13 Learning Outcomes:
21 Mars 2006Visions for infrared astronomy1 Protoplanetary worlds at the AU scale Jean Philippe Berger J. Monnier, R. Millan-Gabet, W. Traub, M. Benisty,
J. Cuadra – Accretion of Stellar Winds in the Galactic Centre – IAU General Assembly – Prague – p. 1 Accretion of Stellar Winds in the Galactic Centre.
Magnetism in Herbig Ae/Be stars and the link to the Ap/Bp stars E. Alecian, C. Catala, G.A. Wade, C. Folsom, J. Grunhut, J.-F. Donati, P. Petit, S. Bagnulo,
Chapter 4: Formation of stars. Insterstellar dust and gas Viewing a galaxy edge-on, you see a dark lane where starlight is being absorbed by dust. An.
STUDYING NEBULAE EJECTED FROM MASSIVE STARS WITH HERSCHEL Chloi Vamvatira-Nakou ARC meeting - 11 February 2010 Centre Spatiale de Liège (CSL) (PhD student.
Modeling Disks of sgB[e] Stars Jon E. Bjorkman Ritter Observatory.
Massive star feedback – from the first stars to the present Jorick Vink (Keele University)
A few Challenges in massive star evolution ROTATIONMAGNETIC FIELD MULTIPLICITY How do these distributions vary with metallicity? How do these distributions.
The Role of Giant LBV Eruptions in the Evolution of Very Massive Stars Nathan Smith CASA, U. Colorado In collaboration with Stan Owocki (U. Delaware) In.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
From an evolutionary point of view Selma de Mink Utrecht University Lorentz Center Workshop “Stellar Mergers” Ines Brott (Utrecht), Matteo Cantiello (Utrecht),
Multi-Epoch Star Formation? The Curious Case of Cluster Stephen Eikenberry University of Florida 11 April 2007.
Spectropolarimetry Bag Lunch Seminar - Dec 2003 Outline 1.Background 2.Applications a)Studying the transition from AGB to post-AGB; b)Probing the structure.
Monte Carlo Radiation Transfer in Circumstellar Disks Jon E. Bjorkman Ritter Observatory.
Dusty disks in evolved stars?
Magnetism and Rotation in Herbig Ae/Be stars E. Alecian Laboratoire d’Astrophysique de l’Observatoire de Grenoble In collaboration with G.A. Wade, C. Catala,
Kick-off meeting SIAMOIS Paris, mai 2006 PMS targets Seismology of Herbig stars with SIAMOIS Torsten Böhm, Marc-Antoine Dupret Claude Catala, Marie-Jo.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
CHARA Collaboration Year-Five Science Review Observations of Be Star Circumstellar disks with the CHARA Array Status of the Be stars Survey Project CHARA.
1 Chang-Hwan Spin of Stellar Mass Black Holes: Hypernova and BH Spin Correlation in Soft X-ray BH Binaries.
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Milli-arcsecond Imaging of the Inner Regions of Protoplanetary Disks Stéphanie Renard In collaboration with F. Malbet, E. Thiébaut, J.-P. Berger & M. Benisty.
The Herbig Ae/Be stars: what we have learnt with ESPaDOnS E. Alecian, G.A. Wade, C. Catala, C. Folsom, J. Grunhut, J.-F. Donati, P. Petit, S. Bagnulo,
Padova, October Padova, October 1980 Padova, October 1980.
Optical counterparts to Ultraluminous X-ray sources Jeanette Gladstone - University of Alberta T. P. Roberts (U of Durham), A. D. Goulding (CfA) T. Cartwright.
Discussions about Z effects on the Conti scenario Geneva, 1983.
The Upper Main Sequence O stars OBN and OBC stars Wolf-Rayet stars Meredith Danowski Astronomy 411 Feb. 14, 2007.
Probing the inner circumstellar structures of T Tauri and Herbig stars Jorick Vink (Imperial College London) Janet Drew (Imperial), Tim Harries (Exeter),
Young Stellar Objects: The Inner AU John D. Monnier University of Michigan Art Credit: Luis Belerique Collaborators Ajay Tannirkulam (UM)Rafael Millan-Gabet.
The GOOD NICMOS Survey (GNS): Observing Massive Galaxies at z > 2 Christopher J. Conselice (University of Nottingham) with Asa Bluck, Ruth Gruethbacher,
The All-Orion Spectroscopic Survey and other Hecto Surveys of Pre-main Sequence Populations James Muzerolle (for Lori Allen) with Tom Megeath, Elaine Winston,
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
The Deaths of Stars Please press “1” to test your transmitter.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Matteo Cantiello Astronomical Institute Utrecht Binary star progenitors of long GRBs M. Cantiello, S.-C. Yoon, N. Langer, and M. Livio A&A 465, L29-L33.
On the origin of Microturbulence in hot stars
CSI in SNRs You-Hua Chu Inst of Astron and Astroph
Progenitors of long GRBs
Mario van den Ancker – ESO Garching
Pre-Main-Sequence of A stars
Lecture 23: Stellar Life-Cycles.
The Deaths of Stars.
Pre-supernova mass-loss predictions for massive stars
Dark matter and anomalous gas in the spiral galaxy NGC 4559
Chandra Science Highlight
Stellar Evolution.
Presentation transcript:

Linear spectropolarimetry Jorick Vink (Armagh Observatory)

Linear Spectropolarimetry PART I: massive OB stars Wolf-Rayet stars (WRs) Luminous Blue Variables (LBVs) PART II: pre-main sequence (PMS) Herbig AeBe stars T Tauri stars

Part I (Outline) Massive star evolution Spherical winds? Linear polarimetry WR data LBV data

Evolution of a Massive Star O O  LBV  WR  SN

Radiation-driven wind by Lines dM/dt = f (Z, L, M, Teff) Abbott & Lucy (1985)

Wind momenta at low Z Vink et al. (2001) Mokiem et al. (2007) Models (Vink) Data (Mokiem) VLT FLAMES

WR stars produce Carbon ! Geneva models (Maeder & Meynet 1987)

WR stars produce Carbon ! Geneva models (Maeder & Meynet 1987)

Which element drives WR winds? - C  Mdot does not depend on host Z - Fe  Mass loss DOES depend on host Z

Z-dependence of WR winds Vink & de Koter (2005, A&A)

Implications of lower WR mass loss:  less angular momentum loss  Long-duration GRBs favoured at low Z

Are low Z WRs fast rotators? No v sin i Are the winds aspherical?  Linear Polarimetry

Polarimetry – asymmetry

No Polarisation

Depolarisation

LMC WR spectropolarimetry VLT/FORS1 (Vink 2007)

LMC WR spectropolarimetry

Statistics Be stars in galaxy: 60% line effects WR stars in galaxy 15-20% WR stars in LMC: 2/13 i.e. 15% (Harries et al. 1998) (Poekert & Marlborough 1976)

Low Z Wolf-Rayet stars LMC WR winds as symmetric as galactic ones LMC winds strong enough to remove angular momentum GRB threshold Z: 40% solar or less

LBV: Eta Car

LBV spectropolarimetry Text (Davies, Oudmaijer & Vink, 2005)

AG Car data Text

Linear polarisation from a disk Q U

Polarisation due to clumps Q U

PART II

Part II: PMS (Outline) Introduction –T Tauri 1 Msun –Herbig Ae 3 Msun –Herbig Be 10 Msun Polarisation data Disc scattering models –inner hole –undisrupted X ray emission

Questions for Star Formation Do all stars form by disk accretion? Is there a fundamental difference between low- and high mass star formation?

Hertzsprung-Russell Diagram OBA F G KM Luminosity T Tauri Herbig AeBe O stars ZAMS

T Tauri stars: Magnetospheric Accretion

Intermediate mass: Herbig stars Magnetic fields? Disks? YES – Sub-mm (Mannings & Sargent 1997) NO – Infrared interferometry (Millan-Gabet et al. 2001)

Polarisation across line? 1. No change 2. Depolarisation 3. LINE Polarisation

No Polarisation

Depolarisation

Line Polarisation – PA Flip

Survey Herbigs and T Tauris Herbig Be stars: 12 Herbig Ae stars: 11 T Tauri stars: 10

Data: Herbigs and T Tauris T TauriHerbig BeHerbig Ae PA Pol I

Polarisation across line? 1. No change 2. Depolarisation 3. LINE Polarisation Herbig Be: 7/12 Herbig Ae: 9/11 (Vink et al. 2002, 2003, 2005b) T Tauri: 9/10

QU: Herbig Ae and T Tauri star MWC 480 RY Tau

Models of COMPACT line emission 3D Monte Carlo Keplerian rotating disk Flat or constant opening angle Scattering only – no line transfer With and without an inner hole

With/without an inner hole

With/without a hole

Constraining the inner disk radius

Constraining the inner hole size: Single PA flip; known inclinations  AB Aur Inner rim > 5 Rstar  CQ Tau Inner rim > 4 Rstar  SU Aur Inner rim > 3 Rstar Gradual PA change  GW Ori Inner rim 3 or 4 Rstar (Vink et al. 2005a, 2005b)

McLean effect in FU Ori PA Pol I Accurate measurement of intrinsic polarisation PA

Imaged disks: position angles

Findings Herbig Be: disks on small scales Herbig Ae/T Tau: rotating accretion disks compact line emission inner holes sizes 3 – 5 stellar radii

H-band image of MWC 297

Chandra: MWC 297 companion