Fast Approximation to Spherical Harmonics Rotation

Slides:



Advertisements
Similar presentations
Normal Mapping for Precomputed Radiance Transfer
Advertisements

All-Frequency PRT for Glossy Objects Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, John Snyder Microsoft.
Jan Kautz, MPI Informatik Peter-Pike Sloan, Microsoft Research
Spherical Harmonic Lighting Jaroslav Křivánek. Overview Function approximation Function approximation Spherical harmonics Spherical harmonics Some other.
1 Radiance Workshop 2004 – Fribourg, Switzerland Radiance Caching for Efficient Global Illumination Computation J. Křivánek P. Gautron S. Pattanaik K.
Fast Depth-of-Field Rendering with Surface Splatting Jaroslav Křivánek CTU Prague IRISA – INRIA Rennes Jiří Žára CTU Prague Kadi Bouatouch IRISA – INRIA.
Adaptive Mesh Subdivision for Precomputed Radiance Transfer Jaroslav Křivánek Univ. of Central Florida CTU Prague IRISA – INRIA Rennes Sumanta Pattanaik.
Improved Radiance Gradient Computation Jaroslav Křivánek Pascal Gautron Kadi Bouatouch Sumanta Pattanaik ComputerGraphicsGroup.
A Novel Hemispherical Basis for Accurate and Efficient Rendering P. Gautron J. Křivánek S. Pattanaik K. Bouatouch Eurographics Symposium on Rendering 2004.
Real-time Shading with Filtered Importance Sampling
Spatial Directional Radiance Caching Václav Gassenbauer Czech Technical University in Prague Jaroslav Křivánek Cornell University Kadi Bouatouch IRISA.
Computer graphics & visualization Global Illumination Effects.
Environment Mapping CSE 781 – Roger Crawfis
Zhao Dong 1, Jan Kautz 2, Christian Theobalt 3 Hans-Peter Seidel 1 Interactive Global Illumination Using Implicit Visibility 1 MPI Informatik Germany 2.
Spherical Harmonic Lighting of Wavelength-dependent Phenomena Clifford Lindsay, Emmanuel Agu Worcester Polytechnic Institute (USA)
Frequency Domain Normal Map Filtering Charles Han Bo Sun Ravi Ramamoorthi Eitan Grinspun Columbia University.
All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance
Rendering with Environment Maps Jaroslav Křivánek, KSVI, MFF UK
Computer graphics & visualization Pre-Computed Radiance Transfer PRT.
Paper Presentation - An Efficient GPU-based Approach for Interactive Global Illumination- Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, Hujun Bao Presenter.
Preserving Realism in real-time Rendering of Bidirectional Texture Functions Jan Meseth, Gero Müller, Reinhard Klein Bonn University Computer Graphics.
PRT Summary. Motivation for Precomputed Transfer better light integration and light transport –dynamic, area lights –shadowing –interreflections in real-time.
Real-Time Rendering Paper Presentation Imperfect Shadow Maps for Efficient Computation of Indirect Illumination T. Ritschel T. Grosch M. H. Kim H.-P. Seidel.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University.
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 18: Precomputation-Based Real-Time Rendering Ravi Ramamoorthi
Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2
Advanced Computer Graphics (Fall 2009) CS , Lecture 1: Introduction and History Ravi Ramamoorthi Some.
Final Gathering on GPU Toshiya Hachisuka University of Tokyo Introduction Producing global illumination image without any noise.
Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2
Jiaping Wang 1 Peiran Ren 1,3 Minmin Gong 1 John Snyder 2 Baining Guo 1,3 1 Microsoft Research Asia 2 Microsoft Research 3 Tsinghua University.
Exploiting Temporal Coherence for Incremental All-Frequency Relighting Ryan OverbeckRavi Ramamoorthi Aner Ben-ArtziEitan Grinspun Columbia University Ng.
Precomputed Radiance Transfer Harrison McKenzie Chapter.
Fast Global-Illumination on Dynamic Height Fields
Matrix Row-Column Sampling for the Many-Light Problem Miloš Hašan (Cornell University) Fabio Pellacini (Dartmouth College) Kavita Bala (Cornell University)
Pre-computed Radiance Transfer Jaroslav Křivánek, KSVI, MFF UK
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
ICheat: A Representation for Artistic Control of Cinematic Lighting Juraj ObertJaroslav Křivánek Daniel Sýkora Fabio Pellacini Sumanta Pattanaik
Efficient Irradiance Normal Mapping Ralf Habel, Michael Wimmer Institute of Computer Graphics and Algorithms Vienna University of Technology.
Adaptive Real-Time Rendering of Planetary Terrains WSCG 2010 Raphaël Lerbour Jean-Eudes Marvie Pascal Gautron THOMSON R&D, Rennes, France.
Sebastian Enrique Columbia University Real-Time Rendering Using CUReT BRDF Materials with Zernike Polynomials CS Topics.
Spherical Harmonic Lighting: The Gritty Details Robin Green R&D Programmer Sony Computer Entertainment America.
Jonathan M Chye Technical Supervisor : Mr Matthew Bett 2010.
-Global Illumination Techniques
Sebastian Enrique Columbia University Relighting Framework COMS 6160 – Real-Time High Quality Rendering Nov 3 rd, 2004.
Real-Time Rendering Digital Image Synthesis Yung-Yu Chuang 01/03/2006 with slides by Ravi Ramamoorthi and Robin Green.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University SIGGRAPH 2001 Stanford University SIGGRAPH.
Real-Time Relighting Digital Image Synthesis Yung-Yu Chuang 1/10/2008 with slides by Ravi Ramamoorthi, Robin Green and Milos Hasan.
Real-time Shading with Filtered Importance Sampling Jaroslav Křivánek Czech Technical University in Prague Mark Colbert University of Central Florida.
View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.
A Frequency Analysis of Light Transport Fr é do Durand – MIT CSAIL With Nicolas Holzschuch, Cyril Soler, Eric Chan & Francois Sillion Artis Gravir/Imag-Inria.
All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation Ren Ng Stanford Ravi Ramamoorthi Columbia SIGGRAPH 2003 Pat Hanrahan Stanford.
Quick survey about PRT Valentin JANIAUT KAIST (Korea Advanced Institute of Science and Technology)
Real-time Rendering of Heterogeneous Translucent Objects with Arbitrary Shapes Stefan Kinauer KAIST (Korea Advanced Institute of Science and Technology)
Fast Approximation to Spherical Harmonics Rotation Sumanta Pattanaik University of Central Florida Kadi Bouatouch IRISA / INRIA Rennes Jaroslav Křivánek.
Real-Time High Quality Rendering CSE 291 [Winter 2015], Lecture 2 Graphics Hardware Pipeline, Reflection and Rendering Equations, Taxonomy of Methods
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
1 Temporal Radiance Caching P. Gautron K. Bouatouch S. Pattanaik.
Spherical Harmonics in Actual Games
Radiance Caching for Global Illumination Computation on Glossy Surfaces A dissertation prepared by Jaroslav Křivánek under the joint supervision of Kadi.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Ultimate Realism and Speed K. H. Ko School of Mechatronics Gwangju Institute.
Local Illumination and Shading
Thank you for the introduction
Non-Linear Kernel-Based Precomputed Light Transport Paul Green MIT Jan Kautz MIT Wojciech Matusik MIT Frédo Durand MIT Henrik Wann Jensen UCSD.
Radiance Cache Splatting: A GPU-Friendly Global Illumination Algorithm P. Gautron J. Křivánek K. Bouatouch S. Pattanaik.
All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation Ren Ng Stanford Ravi Ramamoorthi Columbia Pat Hanrahan Stanford.
Toward Real-Time Global Illumination. Global Illumination == Offline? Ray Tracing and Radiosity are inherently slow. Speedup possible by: –Brute-force:
Toward Real-Time Global Illumination. Project Ideas Distributed ray tracing Extension of the radiosity assignment Translucency (subsurface scattering)
Real-time environment map lighting
CS5500 Computer Graphics May 29, 2006
Real-time Global Illumination with precomputed probe
Presentation transcript:

Fast Approximation to Spherical Harmonics Rotation Jaroslav Křivánek Czech Technical University Jaakko Konttinen University of Central Florida Sumanta Pattanaik University of Central Florida Kadi Bouatouch IRISA / INRIA Rennes Jiří Žára Czech Technical University Computer Graphics Group

Presentation Topic Goal Rotate a spherical function represented by Spherical Harmonics Proposed method Approximation through a truncated Taylor expansion Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Spherical Harmonics Basis functions on the sphere Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Spherical Harmonics + + + + Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Spherical Harmonics Image Robin Green, Sony computer Entertainment Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Spherical Harmonics represented by a vector of coefficients: Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Spherical Harmonics Basis functions on the sphere l = 0 l = 1 l = 2 Jaroslav Křivánek – Fast Spherical Harmonics Rotation

SH Rotation – Problem Definition Given coefficients , representing a spherical function find coefficients  for directly from coefficients . Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Our Contribution Novel, fast, approximate rotation Based on a truncated Taylor Expansion of the SH rotation matrix 4-6 times faster than [Kautz et al. 2002] O(n2) complexity instead of O(n3) Two applications Global illumination (radiance interpolation) Real-time shading (normal mapping) Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusions Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusions Jaroslav Křivánek – Fast Spherical Harmonics Rotation

SH Rotation – Problem Definition Given coefficients , representing a spherical function find coefficients  for directly from coefficients . Jaroslav Křivánek – Fast Spherical Harmonics Rotation

SH Rotation Matrix Rotation = linear transformation: Jaroslav Křivánek – Fast Spherical Harmonics Rotation

SH Rotation Given the desired 3D rotation, find the matrix R Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusions Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Previous Work – Molecular Chemistry [Ivanic and Ruedenberg 1996] Recurrent relations: Rl = f(R1,Rl-1) [Choi et al. 1999] Through complex spherical harmonics Fast for complex harmonics Slow conversion to the real form Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Previous Work – Computer Graphics [Kautz et al. 2002] zxzxz-decomposition By far the fastest previous method Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Previous Work – Summary O(n3) complexity Slow Bottleneck in rendering applications Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusions Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Our Rotation Fast, approximate rotation Based on replacing the SH rotation matrix by its Taylor expansion 4-6 times faster than [Kautz et al. 2002] Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Rotation Decomposition Decompose the 3D rotation into ZYZ Euler angles: R = RZ(a) RY(b) RZ(g) Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Rotation Decomposition R = RZ(a) RY(b) RZ(g) Rotation around Z is simple and fast Rotation around Y still a problem Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Rotation Around Y [Kautz et al. 2002] Decomposition of Y into X(+90˚), Z, and X(-90˚) R = RZ(a) RX(+90˚) RZ(b) RX(-90˚) RZ(g) Rotation around Z is simple and fast Rotation around X is fixed-angle can be tabulated The RXRZRX-part can still be improved… Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Rotation Around Y – Our Approach Second order truncated Taylor expansion of RY(b) Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Taylor Expansion of RY(b) Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Rotation Procedure – Taylor Expansion Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Rotation Procedure – Taylor Expansion “1.5-th order Taylor expansion” Very sparse matrix Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Full Rotation Procedure Decompose the 3D rotation into ZYZ Euler angles: R = RZ(a) RY(b) RZ(g) Rotate around Z by a Use the “1.5-th order” Taylor expansion to rotate around Y by b Rotate around Z by g Jaroslav Křivánek – Fast Spherical Harmonics Rotation

SH Rotation – Results L2 error for a unit length input vector Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusion Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Application in GI - Radiance Caching Sparse computation of indirect illumination Interpolation Enhanced with gradients Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Incoming Radiance Interpolation Interpolate coefficient vectors 1 and 2 Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Interpolation on Curved Surfaces Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Interpolation on Curved Surfaces Align coordinate frames in interpolation p1 R p Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Results in Radiance Caching Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Results in Radiance Caching Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusion Jaroslav Křivánek – Fast Spherical Harmonics Rotation

GPU-based Real-time Shading Original method by [Kautz et al. 2002] Arbitrary BRDFs represented by SH in the local coordinate frame Environment Lighting represented by SH in the global coordinate frame  ( ) Lout = Incident Radiance BRDF = coeff. dot product Jaroslav Křivánek – Fast Spherical Harmonics Rotation

GPU-based Real-time Shading (contd.) must be rotated from global to local frame zxzxz - rotation too complicated  on CPU Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Our Extension – Normal Mapping Normal modulated by a texture Our rotation approximation Rotation from the un-modulated to the modulated coordinate frame Small rotation angle  good accuracy Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Normal Mapping Results Rotation Ignored Our Rotation Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Normal Mapping Results Rotation Ignored Our Rotation Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Normal Mapping Results Rotation Ignored Our Rotation Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Talk Overview SH rotation Previous Work Our Rotation Application in global illumination Application in real-time shading Conclusion Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Conclusion and Future Work Summary Fast, approximate rotation Truncated Taylor Expansion of the SH rotation matrix 4-6 times faster than [Kautz et al. 2002] O(n2) complexity instead of O(n3) Applications in global illumination and real-time shading Future Work Rotation for Wavelets Normal mapping for pre-computed radiance transfer Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Thank You for your Attention ? ? Jaroslav Křivánek – Fast Spherical Harmonics Rotation

Appendix – Bibliography [Křivánek et al. 2005] Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics, 11(5), September/October 2005. [Ivanic and Ruedenberg 1996] Joseph Ivanic and Klaus Ruedenberg. Rotation matrices for real spherical harmonics. direct determination by recursion. J. Phys. Chem., 100(15):6342–6347, 1996. Joseph Ivanic and Klaus Ruedenberg. Additions and corrections : Rotation matrices for real spherical harmonics. J. Phys. Chem. A, 102(45):9099–9100, 1998. [Choi et al. 1999] Cheol Ho Choi, Joseph Ivanic, Mark S. Gordon, and Klaus Ruedenberg. Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys., 111(19):8825–8831, 1999. [Kautz et al. 2002] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In Proceedings of the 13th Eurographics workshop on Rendering, pages 291–296. Eurographics Association, 2002. Jaroslav Křivánek – Fast Spherical Harmonics Rotation