Section 4.2 Objectives Determine conditional probabilities

Slides:



Advertisements
Similar presentations
Conditional Probability and the Multiplication Rule
Advertisements

Larson/Farber Ch. 3 Chapter 3: Probability StatisticsSpring2003/CourseHome/index.htm.
Chapter 3 Probability Larson/Farber 4th ed.
Section 4.4 The Multiplication Rules & Conditional Probability
Probability Rules Section 4.2 Created by Laura Ralston.
Fair Coin Activity How do we flip the coin so it is done in the same manner each time? Should you turn the coin over when you catch it? Which side of the.
Multiplication Rules for Probability Independent Events Two events are independent if the fact that A occurs does not affect the probability of B occuring.
1 1 PRESENTED BY E. G. GASCON Introduction to Probability Section 7.3, 7.4, 7.5.
Statistics Notes.  In the previous section, you learned how to find the probability of two events, A and B, occurring in sequence. Such probabilities.
3.2 Conditional Probability & the Multiplication Rule Statistics Mrs. Spitz Fall 2008.
Probability Chapter 3. § 3.1 Basic Concepts of Probability.
Chapter 3 Probability Larson/Farber 4th ed.
Chapter 3 Probability.
3.1 Probability Experiments Probability experiment: An action, or trial, through which specific results (counts, measurements, or responses) are obtained.
Section 4.1 What is Probability ? Larson/Farber 4th ed.
Conditional Probability
Chapter Probability 1 of 88 3 © 2012 Pearson Education, Inc. All rights reserved.
Addition Rule Objectives
Introductory Statistics Lesson 3.2 A Objective: SSBAT find conditional probability. Standards: M11.E
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 12.6 OR and AND Problems.
Chapter 1:Independent and Dependent Events
Chapter 15 B: The Multiplication Rule & Conditional Probabilities
Conditional Probability and the Multiplication Rule
Chapter 3 Probability Larson/Farber 4th ed. Chapter Outline 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule.
WRITE DOWN 5 WAYS IN WHICH YOU SEE/USE PROBABILITY IN EVERY DAY LIFE.
Chapter 3 Probability Larson/Farber 4th ed 1. Chapter Outline 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Chapter Probability 3.
Section 3.2 Conditional Probability and the Multiplication Rule.
Conditional Probability and the Multiplication Rule.
Section 3.2 Conditional Probability and the Multiplication Rule.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Chapter Probability 3.
Statistics.  Probability experiment: An action through which specific results (counts, measurements, or responses) are obtained.  Outcome: The result.
Conditional Probability and the Multiplication Rule NOTES Coach Bridges.
Copyright © 2011 Pearson Education, Inc. Probability: Living with the Odds.
Section 5.3 Independence and the Multiplication Rule.
7/20 The following table shows the number of people that like a particular fast food restaurant. 1)What is the probability that a person likes Wendy’s?
3.2-Conditional Probability The probability of an event occurring given another event has already occurred. P(B|A) = “Probability of B, given A” # outcomes.
S ECTION 7.2: P ROBABILITY M ODELS. P ROBABILITY M ODELS A Probability Model describes all the possible outcomes and says how to assign probabilities.
Section 3.2 Conditional Probability and the Multiplication Rule Larson/Farber 4th ed 1.
Section 3.3 Addition Rule (Venn Diagram). Section 3.3 Objectives Determine if two events are mutually exclusive Use a Venn Diagram to find the probability.
Section 3.3 Addition Rule © 2012 Pearson Education, Inc. All rights reserved. 1 of 88.
WARM UP 1 Find the mean, median, and mode for the following data:
Probability. Definitions Probability: The chance of an event occurring. Probability Experiments: A process that leads to well- defined results called.
Chapter 3 Probability 1. Do Now 3/31 Give an example of Objective Probability. 2.
Discrete Math Section 16.1 Find the sample space and probability of multiple events The probability of an event is determined empirically if it is based.
Section 3.2 Conditional Probability and the Multiplication Rule © 2012 Pearson Education, Inc. All rights reserved. 1 of 88.
Probability Test Review Larson/Farber 4th ed.
Chapter 3 Probability.
Conditional Probability and the Multiplication Rule
Chapter 3 Probability.
Chapter 3 Probability Larson/Farber 4th ed.
Conditional Probability & the Multiplication Rule
Probability Test Review Larson/Farber 4th ed.
Probability Normal Distribution Sampling and Sample size
Combining Probabilities
Elementary Statistics: Picturing The World
Probability and Statistics Chapter 3 Notes
Section 3-3 Mutually exclusive events are events that cannot both happen at the same time. The Addition Rule (For “OR” probabilities) “Or” can mean one.
Elementary Statistics: Picturing The World
Chapter 3 Probability.
Chapter 3 Probability.
Section 3.3 Objectives Addition Rule
Section 3.3 Addition Rule Larson/Farber 4th ed.
Chapter 3 Probability Larson/Farber 4th ed.
Section 4-2 Addition Rules
Chapter 3 Probability.
Chapter 3 Probability.
The Standard Score Standard Score (z-score)
Addition Rule Objectives
Presentation transcript:

Section 4.2 Objectives Determine conditional probabilities Distinguish between independent and dependent events Use the Multiplication Rule to find the probability of two events occurring in sequence Use the Multiplication Rule to find conditional probabilities Larson/Farber 4th ed

Section 4.2 Multiplication Rule Larson/Farber 4th ed

Conditional Probability The probability of an event occurring, given that another event has already occurred Denoted P(B | A) (read “probability of B, given A”) Larson/Farber 4th ed

Example: Finding Conditional Probabilities Two cards are selected in sequence from a standard deck. Find the probability that the second card is a queen, given that the first card is a king. (Assume that the king is not replaced.) Solution: Because the first card is a king and is not replaced, the remaining deck has 51 cards, 4 of which are queens. Larson/Farber 4th ed

Example: Finding Conditional Probabilities The table shows the results of a study in which researchers examined a child’s IQ and the presence of a specific gene in the child. Find the probability that a child has a high IQ, given that the child has the gene. Gene Present Gene not present Total High IQ 33 19 52 Normal IQ 39 11 50 72 30 102 Larson/Farber 4th ed

Solution: Finding Conditional Probabilities There are 72 children who have the gene. So, the sample space consists of these 72 children. Gene Present Gene not present Total High IQ 33 19 52 Normal IQ 39 11 50 72 30 102 Of these, 33 have a high IQ. Larson/Farber 4th ed

Independent and Dependent Events Independent events The occurrence of one of the events does not affect the probability of the occurrence of the other event P(B | A) = P(B) or P(A | B) = P(A) Events that are not independent are dependent Larson/Farber 4th ed

Example: Independent and Dependent Events Decide whether the events are independent or dependent. Selecting a king from a standard deck (A), not replacing it, and then selecting a queen from the deck (B). Solution: Dependent (the occurrence of A changes the probability of the occurrence of B) Larson/Farber 4th ed

Example: Independent and Dependent Events Decide whether the events are independent or dependent. Tossing a coin and getting a head (A), and then rolling a six-sided die and obtaining a 6 (B). Solution: Independent (the occurrence of A does not change the probability of the occurrence of B) Larson/Farber 4th ed

The Multiplication Rule Multiplication rule for the probability of A and B The probability that two events A and B will occur in sequence is P(A and B) = P(A) ∙ P(B | A) For independent events the rule can be simplified to P(A and B) = P(A) ∙ P(B) Can be extended for any number of independent events Larson/Farber 4th ed

Example: Using the Multiplication Rule Two cards are selected, without replacing the first card, from a standard deck. Find the probability of selecting a king and then selecting a queen. Solution: Because the first card is not replaced, the events are dependent. Larson/Farber 4th ed

Example: Using the Multiplication Rule A coin is tossed and a die is rolled. Find the probability of getting a head and then rolling a 6. Solution: The outcome of the coin does not affect the probability of rolling a 6 on the die. These two events are independent. Larson/Farber 4th ed

Example: Using the Multiplication Rule The probability that a particular knee surgery is successful is 0.85. Find the probability that three knee surgeries are successful. Solution: The probability that each knee surgery is successful is 0.85. The chance for success for one surgery is independent of the chances for the other surgeries. P(3 surgeries are successful) = (0.85)(0.85)(0.85) ≈ 0.614 Larson/Farber 4th ed

Example: Using the Multiplication Rule Find the probability that none of the three knee surgeries is successful. Solution: Because the probability of success for one surgery is 0.85. The probability of failure for one surgery is 1 – 0.85 = 0.15 P(none of the 3 surgeries is successful) = (0.15)(0.15)(0.15) ≈ 0.003 Larson/Farber 4th ed

Example: Using the Multiplication Rule Find the probability that none of the three knee surgeries is successful. Solution: Because the probability of success for one surgery is 0.85. The probability of failure for one surgery is 1 – 0.85 = 0.15 P(none of the 3 surgeries is successful) = (0.15)(0.15)(0.15) ≈ 0.003 Larson/Farber 4th ed

Example: Using the Multiplication Rule Find the probability that at least one of the three knee surgeries is successful. Solution: “At least one” means one or more. The complement to the event “at least one successful” is the event “none are successful.” Using the complement rule P(at least 1 is successful) = 1 – P(none are successful) ≈ 1 – 0.003 = 0.997 Larson/Farber 4th ed

Example: Using the Multiplication Rule to Find Probabilities More than 15,000 U.S. medical school seniors applied to residency programs in 2007. Of those seniors 93% were matched to a residency position Seventy-four percent of the seniors matched to a residency position were matched to one of their top two choices Medical students electronically rank the residency programs in their order of preference. The term “match” refers to the process where a student’s preference list and program director’s preference list overlap, resulting in a placement . Larson/Farber 4th ed

Example: Using the Multiplication Rule to Find Probabilities Find the probability that a randomly selected senior was matched a residency position and it was one of the senior’s top two choices. Solution: A = {matched to residency position} B = {matched to one of two top choices} P(A) = 0.93 and P(B | A) = 0.74 P(A and B) = P(A)∙P(B | A) = (0.93)(0.74) ≈ 0.688 dependent events Larson/Farber 4th ed

Example: Using the Multiplication Rule to Find Probabilities Find the probability that a randomly selected senior that was matched to a residency position did not get matched with one of the senior’s top two choices. Solution: Use the complement: P(B′ | A) = 1 – P(B | A) = 1 – 0.74 = 0.26 Larson/Farber 4th ed

Section 4.2 Addition Rule Larson/Farber 4th ed

Section 4.2 Objectives Determine if two events are mutually exclusive Use the Addition Rule to find the probability of two events Larson/Farber 4th ed

Mutually Exclusive Events Two events A and B cannot occur at the same time A B A B A and B are mutually exclusive A and B are not mutually exclusive Larson/Farber 4th ed

Example: Mutually Exclusive Events Decide if the events are mutually exclusive. Event A: Roll a 3 on a die. Event B: Roll a 4 on a die. Solution: Mutually exclusive (The first event has one outcome, a 3. The second event also has one outcome, a 4. These outcomes cannot occur at the same time.) Larson/Farber 4th ed

Example: Mutually Exclusive Events Decide if the events are mutually exclusive. Event A: Randomly select a male student. Event B: Randomly select a nursing major. Solution: Not mutually exclusive (The student can be a male nursing major.) Larson/Farber 4th ed

The Addition Rule Addition rule for the probability of A or B The probability that events A or B will occur is P(A or B) = P(A) + P(B) – P(A and B) For mutually exclusive events A and B, the rule can be simplified to P(A or B) = P(A) + P(B) Can be extended to any number of mutually exclusive events Larson/Farber 4th ed

Example: Using the Addition Rule You select a card from a standard deck. Find the probability that the card is a 4 or an ace. Solution: The events are mutually exclusive (if the card is a 4, it cannot be an ace) 4♣ 4♥ 4♦ 4♠ A♣ A♥ A♦ A♠ 44 other cards Deck of 52 Cards Larson/Farber 4th ed

Example: Using the Addition Rule You roll a die. Find the probability of rolling a number less than 3 or rolling an odd number. Solution: The events are not mutually exclusive (1 is an outcome of both events) Odd 5 3 1 2 4 6 Less than three Roll a Die Larson/Farber 4th ed

Solution: Using the Addition Rule Odd 5 3 1 2 4 6 Less than three Roll a Die Larson/Farber 4th ed

Example: Using the Addition Rule The frequency distribution shows the volume of sales (in dollars) and the number of months a sales representative reached each sales level during the past three years. If this sales pattern continues, what is the probability that the sales representative will sell between $75,000 and $124,999 next month? Sales volume ($) Months 0–24,999 3 25,000–49,999 5 50,000–74,999 6 75,000–99,999 7 100,000–124,999 9 125,000–149,999 2 150,000–174,999 175,000–199,999 1 Larson/Farber 4th ed

Solution: Using the Addition Rule A = monthly sales between $75,000 and $99,999 B = monthly sales between $100,000 and $124,999 A and B are mutually exclusive Sales volume ($) Months 0–24,999 3 25,000–49,999 5 50,000–74,999 6 75,000–99,999 7 100,000–124,999 9 125,000–149,999 2 150,000–174,999 175,000–199,999 1 Larson/Farber 4th ed

Example: Using the Addition Rule A blood bank catalogs the types of blood given by donors during the last five days. A donor is selected at random. Find the probability the donor has type O or type A blood. Type O Type A Type B Type AB Total Rh-Positive 156 139 37 12 344 Rh-Negative 28 25 8 4 65 184 164 45 16 409 Larson/Farber 4th ed

Solution: Using the Addition Rule The events are mutually exclusive (a donor cannot have type O blood and type A blood) Type O Type A Type B Type AB Total Rh-Positive 156 139 37 12 344 Rh-Negative 28 25 8 4 65 184 164 45 16 409 Larson/Farber 4th ed

Example: Using the Addition Rule Find the probability the donor has type B or is Rh-negative. Type O Type A Type B Type AB Total Rh-Positive 156 139 37 12 344 Rh-Negative 28 25 8 4 65 184 164 45 16 409 Solution: The events are not mutually exclusive (a donor can have type B blood and be Rh-negative) Larson/Farber 4th ed

Solution: Using the Addition Rule Type O Type A Type B Type AB Total Rh-Positive 156 139 37 12 344 Rh-Negative 28 25 8 4 65 184 164 45 16 409 Larson/Farber 4th ed

Section 4.2 Summary Determined if two events are mutually exclusive Used the Addition Rule to find the probability of two events Larson/Farber 4th ed