a.k.a Electrochemistry a.k.a. Oxidation-Reduction Redox!

Slides:



Advertisements
Similar presentations
Oxidation-Reduction Reactions “Redox”
Advertisements

“Oxidation-Reduction Reactions”
Oxidation Reduction Reactions
Oxidation-Reduction Reactions
Oxidation-Reduction Reactions LEO SAYS GER. Oxidation and Reduction (Redox)  Electrons are transferred  Spontaneous redox rxns can transfer energy 
Oxidation Reduction Chemisty: Redox Chemistry
Chapter 18 Electrochemistry. Redox Reaction Elements change oxidation number  e.g., single displacement, and combustion, some synthesis and decomposition.
Electrochemistry Chapter and 4.8 Chapter and 19.8.
Electron Transfer Reactions Electron transfer reactions are oxidation-reduction or redox reactions. Results in the generation of an electric current (electricity)
Redox: Oxidation and Reduction Definitions Oxidation: loss of e- in an atom increase in oxidation number (ex: -1  0 or +1  +2)  Reduction: gain of.
“Oxidation-Reduction Reactions”
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
“Oxidation-Reduction Reactions” LEO SAYS GER Or OIL RIG.
Oxidation and Reduction (REDOX) reactions?
“Oxidation-Reduction Reactions” LEO SAYS GER Pre-AP Chemistry Charles Page High School Stephen L. Cotton.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an.
Welcome to Chemistry Learning The … th meeting of the class !!!
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electron Transfer Reactions: CH 19: Oxidation-reduction or redox reactions. Results in generation of an electric current (electricity) or caused by.
Redox Reactions Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an.
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
JUST REMEMBER... “OIL RIG” (oxidation is losing, reduction is gaining)
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
1 B.8- B. 9 In which you will learn about: redox definitions assigning oxidation numbers half reactions balancing redox equations.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
17-Nov-97Electrochemistry (Ch. 21)1 ELECTROCHEMISTRY Chapter 21 Electric automobile redox reactions electrochemical cells electrode processes construction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electrochemistry Chapter 19 2 Electron transfer reactions are oxidation- reduction or redox reactions. Electron transfer reactions result in the generation.
Warm Up Predict the products and balance the following equations: a.KI + Br 2 → b.H 2 SO 4 + KOH →
REDOX electrochemistry. Spontaneous redox reactions can transfer energy –Electrons (electricity) –Heat Non-spontaneous redox reactions can be made to.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Oxidation-Reduction Reactions “Redox” LEO SAYS GER.
CHAPTER 20 “Oxidation-Reduction Reactions” LEO SAYS GER Pre-AP Chemistry Charles Page High School Modified Stephen L. Cotton.
Oxidation-Reduction Reactions “Redox” LEO SAYS GER.
Section 20.1 The Meaning of Oxidation and Reduction (called “redox”) OBJECTIVES Define oxidation and reduction in terms of the loss or gain of oxygen,
CE Chemistry Module 8. A. Involves electron changes (can tell by change in charge) Cl NaBr 2NaCl + Br 2 B. Oxidation 1. First used.
CHAPTER 20 “Oxidation-Reduction Reactions” LEO SAYS GER.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an.
a.k.a. Oxidation-Reduction
Electrochemistry.
Electrochemistry Chapter 19.
CHEMISTRY CHAPTER 19 LEO SAYS GER
Electrochemistry Chapter 19
Oxidation Numbers Rules for Assigning Oxidation States
CHAPTER 20 Oxidation-Reduction Reactions LEO SAYS GER.
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
2.6 Redox Part 1. a. demonstrate an understanding of:
Oxidation-Reduction Reactions
Electrochemistry Chapter 19
Electrochemistry Chapter 19.
Electrochemistry Chapter 19
Oxidation-Reduction Reactions
3- Oxidation-Reduction (Redox) titration
Unit 11: Classification of Chemical Reactions
Unit 11: Classification of Chemical Reactions
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

a.k.a Electrochemistry a.k.a. Oxidation-Reduction Redox!

Review of Oxidation numbers The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1.Free elements (uncombined state) have an oxidation number of zero. Na, Be, K, Pb, H 2, O 2, P 4 = 0 2.In monatomic ions, the oxidation number is equal to the charge on the ion. Li +, Li = +1; Fe 3+, Fe = +3; O 2-, O = -2 3.The oxidation number of oxygen is usually –2. In H 2 O 2 it is –1. 4.4

Rules for Assigning Oxidation Numbers 1)The oxidation number of any uncombined element is zero. 2)The oxidation number of a monatomic ion equals its charge.

Rules for Assigning Oxidation Numbers 3)The oxidation number of oxygen in compounds is -2, except in peroxides, such as H 2 O 2 where it is -1. 4)The oxidation number of hydrogen in compounds is +1, except in metal hydrides, like NaH, where it is -1.

Rules for Assigning Oxidation Numbers 5)The sum of the oxidation numbers of the atoms in the compound must equal 0. 2(+1) + (-2) = 0 H O (+2) + 2(-2) + 2(+1) = 0 Ca O H

Rules for Assigning Oxidation Numbers 6)The sum of the oxidation numbers in the formula of a polyatomic ion is equal to its ionic charge. X + 3(-2) = -1 N O  X = +5  X = +6 X + 4(-2) = -2 S O

Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by imposing an electric current. Therefore, this field of chemistry is often called ELECTROCHEMISTRY.

2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction (gain e - ) 19.1 Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction is converted to electricity or electrical energy is used to cause a nonspontaneous reaction to occur

Terminology for Redox Reactions OXIDATION—loss of electron(s) by a species; increase in oxidation number; increase in oxygen.OXIDATION—loss of electron(s) by a species; increase in oxidation number; increase in oxygen. REDUCTION—gain of electron(s); decrease in oxidation number; decrease in oxygen; increase in hydrogen.REDUCTION—gain of electron(s); decrease in oxidation number; decrease in oxygen; increase in hydrogen. OXIDIZING AGENT—electron acceptor; species is reduced. (an agent facilitates something; ex. Travel agents don’t travel, they facilitate travel)OXIDIZING AGENT—electron acceptor; species is reduced. (an agent facilitates something; ex. Travel agents don’t travel, they facilitate travel) REDUCING AGENT—electron donor; species is oxidized.REDUCING AGENT—electron donor; species is oxidized. OXIDATION—loss of electron(s) by a species; increase in oxidation number; increase in oxygen.OXIDATION—loss of electron(s) by a species; increase in oxidation number; increase in oxygen. REDUCTION—gain of electron(s); decrease in oxidation number; decrease in oxygen; increase in hydrogen.REDUCTION—gain of electron(s); decrease in oxidation number; decrease in oxygen; increase in hydrogen. OXIDIZING AGENT—electron acceptor; species is reduced. (an agent facilitates something; ex. Travel agents don’t travel, they facilitate travel)OXIDIZING AGENT—electron acceptor; species is reduced. (an agent facilitates something; ex. Travel agents don’t travel, they facilitate travel) REDUCING AGENT—electron donor; species is oxidized.REDUCING AGENT—electron donor; species is oxidized.

You can’t have one… without the other! Reduction (gaining electrons) can’t happen without an oxidation to provide the electrons. You can’t have 2 oxidations or 2 reductions in the same equation. Reduction has to occur at the cost of oxidation LEO the lion says GER! o s e l e c t r o n s x i d a t i o n a i n l e c t r o n s e d u c t i o n GER!

Another way to remember OIL RIG x i d a t i o n s o s e e d u c t i o n s a i n

Oxidation and Reduction (Redox) Redox currently says that electrons are transferred between reactants Mg + S → Mg 2+ + S 2- The magnesium atom changes to a magnesium ion by losing 2 electrons, and is thus oxidized The sulfur atom is changed to a sulfide ion by gaining 2 electrons, and is thus reduced.

Oxidation and Reduction (Redox) Each sodium atom loses one electron: Each chlorine atom gains one electron:

LEO says GER : LEO says GER : Lose Electrons = Oxidation Sodium is oxidized Gain Electrons = Reduction Chlorine is reduced

LEO says GER : LEO says GER : - Losing electrons is oxidation, and the substance that loses the electrons is called the reducing agent. - Gaining electrons is reduction, and the substance that gains the electrons is called the oxidizing agent. Mg (s) + S (s) → MgS (s) Mg is oxidized – loses e - S is reduced – gains e - Mg is the reducing agent S is the oxidizing agent

Not All Reactions are Redox Reactions - Reactions in which there has been no change in oxidation number are not redox reactions. Examples:

Reducing Agents and Oxidizing Agents An increase in oxidation number = oxidation A decrease in oxidation number = reduction Sodium is oxidized – it is the reducing agent Chlorine is reduced – it is the oxidizing agent

Trends in Oxidation and Reduction Active metals: Lose electrons easily Are easily oxidized Are strong reducing agents Active nonmetals: Gain electrons easily Are easily reduced Are strong oxidizing agents

Identifying Redox Equations In general, all chemical reactions can be assigned to one of two classes: 1)oxidation-reduction, in which electrons are transferred: Single-replacement, combination, decomposition, and combustion 2)this second class has no electron transfer, and includes all others: Double-replacement and acid- base reactions

Identifying Redox Equations In an electrical storm, oxygen and nitrogen react to form nitrogen monoxide: N 2(g) + O 2(g) → 2NO (g) Is this a redox reaction? If the oxidation number of an element in a reacting species changes, then that element has undergone either oxidation or reduction; therefore, the reaction as a whole must be a redox. YES!

Balancing Redox Equations It is essential to write a correctly balanced equation that represents what happens in a chemical reaction Fortunately, two systematic methods are available, and are based on the fact that the total electrons gained in reduction equals the total lost in oxidation. The two methods: 1)Use oxidation-number changes 2)Use half-reactions

Using half-reactions A half-reaction is an equation showing just the oxidation or just the reduction that takes place they are then balanced separately, and finally combined Step 1: write unbalanced equation in ionic form Step 2: write separate half-reaction equations for oxidation and reduction Step 3: balance the atoms in the half- reactions

Using half-reactions continued Step 4: add enough electrons to one side of each half-reaction to balance the charges Step 5: multiply each half-reaction by a number to make the electrons equal in both Step 6: add the balanced half-reactions to show an overall equation Step 7: add the spectator ions and balance the equation

To obtain a useful current, we separate the oxidizing and reducing agents so that electron transfer occurs thru an external wire.To obtain a useful current, we separate the oxidizing and reducing agents so that electron transfer occurs thru an external wire. CHEMICAL CHANGE ---> ELECTRIC CURRENT This is accomplished in a GALVANIC or VOLTAIC cell. A group of such cells is called a battery.

Galvanic Cells 19.2 spontaneous redox reaction anode oxidation cathode reduction - +

Galvanic Cells 19.2 The difference in electrical potential between the anode and cathode is called: cell voltage electromotive force (emf) cell potential Cell Diagram Zn (s) + Cu 2+ (aq) Cu (s) + Zn 2+ (aq) [Cu 2+ ] = 1 M & [Zn 2+ ] = 1 M Zn (s) | Zn 2+ (1 M) || Cu 2+ (1 M) | Cu (s) anodecathode

Standard Electrode Potentials 19.3 Zn (s) | Zn 2+ (1 M) || H + (1 M) | H 2 (1 atm) | Pt (s) 2e - + 2H + (1 M) H 2 (1 atm) Zn (s) Zn 2+ (1 M) + 2e - Anode (oxidation): Cathode (reduction): Zn (s) + 2H + (1 M) Zn 2+ + H 2 (1 atm)

Standard Electrode Potentials 19.3 Standard reduction potential (E 0 ) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm. E 0 = 0 V Standard hydrogen electrode (SHE) 2e - + 2H + (1 M) H 2 (1 atm) Reduction Reaction

19.3 E 0 is for the reaction as written The more positive E 0 the greater the tendency for the substance to be reduced The half-cell reactions are reversible The sign of E 0 changes when the reaction is reversed Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E 0