Dick Bond Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ lnk) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc.

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Dick Bond Constraining Inflation Trajectories, now & then.
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
QUIET Q/U Imaging ExperimenT Osamu Tajima (KEK) QUIET collaboration 1.
Planck 2013 results, implications for cosmology
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Photo: Keith Vanderlinde Detection of tensor B-mode polarization : Why would we need any more data?
Parameterizing Dark Energy Z. Huang, R. J. Bond, L. Kofman Canadian Institute of Theoretical Astrophysics.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
Cosmic challenges for fundamental physics Diederik Roest December 9, 2009 Symposium “The Quantum Universe”
CMB as a physics laboratory
N. Ponthieu Polarization workshop, IAS, Orsay, 09/15/ N. Ponthieu (IAS) The conquest of sky polarization The upper limits era First detections Prospects.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
IFIC, 6 February 2007 Julien Lesgourgues (LAPTH, Annecy)
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
New Inflation Amy Bender 05/03/2006. Inflation Basics Perturbations from quantum fluctuations of scalar field Fluctuations are: –Gaussian –Scale Invariant.
High Resolution Observations of the CMB with the CBI Interferometer XVIII th IAP Colloquium - July Carlo Contaldi CITA.
1 On the road to discovery of relic gravitational waves: From cosmic microwave background radiation Wen Zhao Department of Astronomy University of Science.
Scanning Inflation and Reheating Bottom-up approach to inflation: reconstruction of acceleration trajectories Top-down approach to inflation: seeks to.
Renata Kallosh CIfAR, May 10, 2007 CIfAR, Whistler, May 10, 2007 Stanford Stanford Based on R. K., A. Linde, , R. K., hep-th/ , R. K., M.
COMING HOME Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
The Cosmic Web & the CMB high resolution frontier Dick Bond Primary CMB anisotropies are strongly damped by photon-baryon shear viscosity at high L > 1000.
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
Dick Bond Inflation Now 1+ w (a)=  s f(a/a  eq ;a s /a  eq ;  s ) goes to  a  x3/2 = 3 (1+q)/2 ~1 good e-fold. only ~2params cf. w(a): w0,wa, w.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
CIAR Cosmology & Gravity Program The Cosmic Quest for Fundamental Physics 12 fellows (all but 3 new/repatriated Cdns) 1 institute fellow 6.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Cosmology : Cosmic Microwave Background & Large scale structure & Large scale structure Cosmology : Cosmic Microwave Background & Large scale structure.
1 1 Eric Linder University of California, Berkeley Lawrence Berkeley National Lab Interpreting Dark Energy JDEM constraints.
Making and Probing Inflation Lev Kofman KITPC Beijing November Making Inflation in String Theory How small can be r Gravity Waves from Preheating.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Surveying Inflation and Reheating Cosmological Landscape: Strings, Gravity and Inflation Seoul, September 2005 “K. listened intently. So the Castle had.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Probing inflation with CMB anisotropies Zong-Kuan Guo (ITP, CAS) ICFPC 2012 (Weihai) August 12, 2012.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
the National Radio Astronomy Observatory – Socorro, NM
L2: The Cosmic Microwave Background & the Fluctuation History of the Universe & the Basic Cosmological Parameters Dick Bond.
Appendix E: Intro to the Banff Feb06 Annual Meeting See the body of the text, Section 3.2, for an introduction to this introduction. The slides were taken.
Inflation and Branes Bottom-up approach to inflation: reconstruction of acceleration trajectories Top-down approach to inflation: seeks to embed it in.
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
Dynamical & Resolution Trajectories for Inflation then & now Dick Bond Inflation Now 1+w(a)=  f(a/a  eq ) to 3 (1+q)/2 ~ 1 good e-fold. Only ~2 parameters.
L1: The Cosmic Microwave Background & the Thermal History of the Universe Dick Bond.
Unesco July 2005Francis Bernardeau SPhT Saclay1 Models of inflation with primordial non-Gaussianities Francis Bernardeau SPhT Saclay Collaboration with.
Gravitational Lensing
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Trajectories Bond, Contaldi, Frolov, Kofman, Souradeep, Vaudrevange 05.
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
CMB, lensing, and non-Gaussianities
Constraining Inflation Trajectories with the CMB & Large Scale Structure Dick Bond Dynamical & Resolution Trajectories/Histories, for Inflation then &
1 1 The Darkness of the Universe: The Darkness of the Universe: Acceleration and Deceleration Eric Linder Lawrence Berkeley National Laboratory.
Inflation & its Cosmic Probes, now & then Dick Bond Inflation Now 1+ w (a)=  s f(a/a  eq ;a s /a  eq ;  s ) goes to  a  x3/2 = 3 (1+q)/2 ~1 good.
Dynamical Trajectories for Inflation now & then Dick Bond Inflation Now 1+ w (a)=  s f(a/a  eq ; a s /a  eq ) goes to  a  x3/2 = 3 (1+q)/2 ~1 good.
Cheng Zhao Supervisor: Charling Tao
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
Inflation Then & Now and Cosmic Probes Now & Then Dynamical & Resolution Trajectories for Inflation then & now Dick Bond Inflation Now 1+w(a)=  f(a/a.
CMB physics Zong-Kuan Guo 《现代宇宙学》
Bond, Boyle, Kofman, Prokushkin, Vaudrevange
Early & Late Inflation Theory
Supporting Observations TPX – dust Polarized Sources
Kähler Moduli Inflation
Inflation Then k=(1+q)(a) ~r/16 0<
A Measurement of CMB Polarization with QUaD
Inflation and the cosmological density perturbation
Presentation transcript:

Dick Bond Inflation Then  k  =(1+q)(a) ~r/16 0<   = multi-parameter expansion in ( ln Ha ~ lnk) ~ 10 good e-folds in a (k~10 -4 Mpc -1 to ~ 1 Mpc -1 LSS) ~ 10+ parameters? Bond, Contaldi, Kofman, Vaudrevange 07 V(  ) Cosmic Probes now & then CMBpol (T+E,B modes of polarization), LSS Inflation Histories & their Cosmic Probes, now & then Inflation Now 1+ w (a) goes to 2 (1+q)/3 ~1 good e-fold. only ~2params Zhiqi Huang, Bond & Kofman 07 Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Ly  Cosmic Probes Then JDEM-SN + DUNE-WL + Planck +ACT/SPT… V(  )?  ~0 to 2 to 3/2 to ~.4 now, on its way to 0?

CMBology Foregrounds CBI, Planck Foregrounds CBI, Planck Secondary Anisotropies (CBI,ACT) (tSZ, kSZ, reion) Secondary Anisotropies (CBI,ACT) (tSZ, kSZ, reion) Non-Gaussianity (Boom, CBI, WMAP) Non-Gaussianity (Boom, CBI, WMAP) Polarization of the CMB, Gravity Waves (CBI, Boom, Planck, Spider) Polarization of the CMB, Gravity Waves (CBI, Boom, Planck, Spider) Dark Energy Histories (& CFHTLS-SN+WL) Dark Energy Histories (& CFHTLS-SN+WL) subdominant phenomena (isocurvature, BSI) subdominant phenomena (isocurvature, BSI) Inflation Histories (CMBall+LSS) Inflation Histories (CMBall+LSS) Probing the linear & nonlinear cosmic web wide open braking approach to preheating roulette inflation potential T=  +i 

Polarbear (300 SZA APEX (~400 SPT (1000 Pole ACT (3000 Planck 08.8 (84 bolometers) ALMA (12000 bolometers) SCUBA2 Quiet1 Quiet2 CBI pol to Acbar to Jan’06, to ? 2017 (1000 Spider CAPMAP AMI GBT CBI2 to early’08 LHC

CMB/LSS Phenomenology CITA/CIfAR here Bond Contaldi Lewis Sievers Pen McDonald Majumdar Nolta Iliev Kofman Vaudrevange Huang UofT here Netterfield Crill Carlberg Yee & Exptal/Analysis/Phenomenology Teams here & there Boomerang03 (98) Cosmic Background Imager1/2 Acbar07 WMAP (Nolta, Dore) CFHTLS – WeakLens CFHTLS - Supernovae RCS2 (RCS1; Virmos-Descart) CITA/CIfAR there Mivelle-Deschenes (IAS) Pogosyan (U of Alberta) Myers (NRAO) Holder (McGill) Hoekstra (UVictoria) van Waerbeke (UBC) Parameter data now: CMBall_pol SDSS P(k), BAO, 2dF P(k) Weak lens (Virmos/RCS1, CFHTLS, RCS2) ~100sqdeg Benjamin etal. aph/ v1 Lya forest (SDSS) SN1a “gold”(192,15 z>1) CFHTLS then: ACT (SZ), Spider, Planck, 21(1+z)cm GMRT,SKA Dalal Dore Kesden MacTavish Pfrommer Shirokov Dalal Dore Kesden MacTavish Pfrommer Shirokov Prokushkin

WMAP3 sees 3 rd pk, B03 sees 4 th ‘Shallow’ scan, 75 hours, f sky =3.0%, large scale TT ‘Shallow’ scan, 75 hours, f sky =3.0%, large scale TT ‘deep’ scan, 125 hours, fsky=0.28% 115sq deg, ~ Planck2yr ‘deep’ scan, 125 hours, fsky=0.28% 115sq deg, ~ Planck2yr B03+B98 final soon

CBIpol 2.5 yrs EE, ~ best so far, ~QuaD TEBB TT

CBI excess 04, 2.5 yrs cf. CBI excess Dec07, 5 yrs Jan08: Full ACBAR data ~ 4X includes 2005 observations

Current high L state November 07 Current high L state November 07 CBI sees 4 th 5 th pk CBI excess 07 WMAP3 sees 3 rd pk, B03 sees 4 th

why Atacama? driest desert in the world. thus: cbi, toco, apex, asti, act, alma, quiet, clover

forecast Planck &143 Spider10d 95&150 Synchrotron pol’n Dust pol’n are higher in B Foreground Template removals from multi- frequency data is crucial

PRIMARY 2012? CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

INFLATION THEN

Standard Parameters of Cosmic Structure Formation What is the average curvature of the universe (we can see)? Density of Baryonic Matter Density of non- interacting Dark Matter Cosmological Constant Spectral index of primordial scalar (curvature) perturbations Spectral index of primordial tensor (Gravity Wave) perturbations Scalar Amplitude Tensor Amplitude Period of inflationary expansion, quantum noise  metric perturbations Compton Depth to Last Scattering Surface When did stars reionize the universe? r < 0.6 or < % CL

n s = ( Planck1).93 run&tensor r=A t / A s < % CL (+-.03) <.36 CMB+LSS run&tensor <.05 ln r prior! dn s /dln k = (+-.005) CMB+LSS run&tensor prior change? A s = x The Parameters of Cosmic Structure Formation Cosmic Numerology: aph/ – our Acbar paper on the basic 7+; bckv07 WMAP3modified+B03+CBIcombined+Acbar06+LSS (SDSS+2dF) + DASI (incl polarization and CMB weak lensing and tSZ)  b h 2 =  c h 2 =   = h =  m  = z reh = w = / ‘phantom DE’ allowed?!

New Parameters of Cosmic Structure Formation =1+q, the deceleration parameter history order N Chebyshev expansion, N-1 parameters (e.g. nodal point values) Hubble parameter at inflation at a pivot pt Fluctuations are from stochastic kicks ~ H/2  superposed on the downward drift at  lnk=1. Potential trajectory from HJ (SB 90,91):

Constraining Inflaton Acceleration Trajectories Bond, Contaldi, Kofman & Vaudrevange 07 “path integral” over probability landscape of theory and data, with mode- function expansions of the paths truncated by an imposed smoothness (Chebyshev-filter) criterion [data cannot constrain high ln k frequencies] P(trajectory|data, th) ~ P(lnH p,  k |data, th) ~ P(data| lnH p,  k ) P(lnH p,  k | th) / P(data|th) Likelihood theory prior / evidence “path integral” over probability landscape of theory and data, with mode- function expansions of the paths truncated by an imposed smoothness (Chebyshev-filter) criterion [data cannot constrain high ln k frequencies] P(trajectory|data, th) ~ P(lnH p,  k |data, th) ~ P(data| lnH p,  k ) P(lnH p,  k | th) / P(data|th) Likelihood theory prior / evidence Data: CMBall (WMAP3,B03,CBI, ACBAR, DASI,VSA,MAXIMA) + LSS (2dF, SDSS,  8[lens]) Data: CMBall (WMAP3,B03,CBI, ACBAR, DASI,VSA,MAXIMA) + LSS (2dF, SDSS,  8[lens]) Theory prior uniform in lnH p,  k (equal a-prior probability hypothesis) Nodal points cf. Chebyshev coefficients (linear combinations) uniform in / log in / monotonic in  k The theory prior matters a lot for current data. Not quite as much for a Bpol future. We have tried many theory priors Theory prior uniform in lnH p,  k (equal a-prior probability hypothesis) Nodal points cf. Chebyshev coefficients (linear combinations) uniform in / log in / monotonic in  k The theory prior matters a lot for current data. Not quite as much for a Bpol future. We have tried many theory priors

inflation Old Inflation New Inflation Chaotic inflation Double Inflation Extended inflation DBI inflation Super-natural Inflation Hybrid inflation SUGRA inflation SUSY F-term inflation SUSY D-term inflation SUSY P-term inflation Brane inflation K-flation N-flation Warped Brane inflation inflation Power-law inflation Tachyon inflation Racetrack inflation Assisted inflation Roulette inflation Kahler moduli/axion Natural pNGB inflation Old view: Theory prior = delta function of THE correct one and only theory Radical BSI inflation variable M P inflation

Chaotic inflation Double Inflation Extended inflation Power-law inflation Roulette inflation Kahler moduli/axion Natural pNGB inflation Radical BSI inflation variable M P inflation

Power-law inflation Uniform acceleration V/ M P 4 ~  exp       M P  -1/2 1-n s  n t  r  r  n s  r  n s  Uniform acceleration V/ M P 4 ~  exp       M P  -1/2 1-n s  n t  r  r  n s  r  n s  M P -2 = 8  G

Chaotic inflation V/ M P 4 ~  2  M P  -1/2  (k)  N I (k) + /3     n s -1  +1  N I (k) - /6  n t  N I (k) - /6  for  N I  =1, r    n s   n t    =2, r   n s  n t    V/ M P 4 ~  2  M P  -1/2  (k)  N I (k) + /3     n s -1  +1  N I (k) - /6  n t  N I (k) - /6  for  N I  =1, r    n s   n t    =2, r   n s  n t   

Natural pNGB inflation V/ M P 4 ~  red 4  sin 2  f red  -1/2  n s  f red -2    1-n s   exp [  1-n s   N I (k) ] (1+  1-n s   -1  exponentially suppressed; higher r if lower  N I & 1-n s to match n s .96, f red  ~ 5, r~0.032 to match n s .97, f red  ~ 5.8, r ~0.048,  V/ M P 4 ~  red 4  sin 2  f red  -1/2  n s  f red -2    1-n s   exp [  1-n s   N I (k) ] (1+  1-n s   -1  exponentially suppressed; higher r if lower  N I & 1-n s to match n s .96, f red  ~ 5, r~0.032 to match n s .97, f red  ~ 5.8, r ~0.048,  abffo92

Old view: Theory prior = delta function of THE correct one and only theory are New view: Theory prior = probability distribution on an energy landscape whose features are at best only glimpsed, huge number of potential minima, inflation the late stage flow in the low energy structure toward these minima. Critical role of collective coordinates in the low energy landscape: moduli fields, sizes and shapes of geometrical structures such as holes in a dynamical extra-dimensional (6D) manifold approaching stabilization moving brane & antibrane separations (D3,D7) are New view: Theory prior = probability distribution on an energy landscape whose features are at best only glimpsed, huge number of potential minima, inflation the late stage flow in the low energy structure toward these minima. Critical role of collective coordinates in the low energy landscape: moduli fields, sizes and shapes of geometrical structures such as holes in a dynamical extra-dimensional (6D) manifold approaching stabilization moving brane & antibrane separations (D3,D7) Theory prior ~ probability of trajectories given potential parameters of the collective coordinates X probability of the potential parameters X probability of initial conditions

Roulette inflation Kahler moduli/axion typical r ~    A s & n s ~0.97 OK but by statistical selection! running dn s /dlnk exists, but small because small observable window typical r ~    A s & n s ~0.97 OK but by statistical selection! running dn s /dlnk exists, but small because small observable window Roulette: which minimum for the rolling ball depends upon the throw; but which roulette wheel we play is chance too. The ‘house’ does not just play dice with the world. focus on “4-cycle Kahler moduli in large volume limit of IIB flux compactifications” Balasubramanian, Berglund 2004, + Conlon, Quevedo 2005, + Suruliz 2005 Real & imaginary parts are both important BKVP06

energy scale of inflation & r V/ M P 4 ~ P s r (1-  3) 3/2 V ~ (10 16 Gev ) 4 r/0.1 (1-  3) energy scale of inflation & r V/ M P 4 ~ P s r (1-  3) 3/2 V ~ (10 16 Gev ) 4 r/0.1 (1-  3) roulette inflation examples V ~ ( few x Gev ) 4 H/ M P ~ (r/.1) 1/2 inflation energy scale cf. the gravitino mass (Kallosh & Linde 07) if a KKLT/largeV CY -like generation mechanism Gev (r/.01) 1/2 ~ H < m 3/2 cf. ~ Tev

Planck1yr simulation: input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. r in  s order 5 uniform prior  s order 5 log prior GW/scalar curvature: current from CMB+LSS : r < 0.6 or < 0.25 (.28) 95%; good shot at % CL with BB polarization (+-.02 PL2.5+Spider),.01 target BUT foregrounds/systematics?? But r-spectrum. But low energy inflation

Planck1 simulation : input LCDM (Acbar)+run+uniform tensor P s P t reconstructed cf. input of LCDM with scalar running & r=0.1  s order 5 uniform prior  s order 5 log prior lnP s lnP t (nodal 5 and 5)

No Tensor SPIDER Tensor Signal Tensor Simulation of large scale polarization signal

B-pol simulation: ~10K detectors > 100x Planck input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. r in  s order 5 uniform prior  s order 5 log prior a very stringent test of the  -trajectory methods: A+ also input trajectory is recovered

INFLATION NOW

Inflation Now 1+ w (a)=  s f(a/a  eq ;a s /a  eq ;  s ) to  a  x3/2 = 3 (1+q)/2 ~1 good e-fold. only ~2 eigenparams Zhiqi Huang, Bond & Kofman07: 3-param formula accurately fits slow-to-moderate roll & even wild rising baroque late-inflaton trajectories, as well as thawing & freezing trajectories Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Ly   s = (dlnV/d  ) 2 /4 = late-inflaton (potential gradient) 2  = now; weak a s 2.3) now  s to then Planck1+JDEM SN+DUNE WL, weak a s 3.7) 3 rd param  s (~d  s /dlna) ill-determined now & then cannot reconstruct the quintessence potential, just the slope  s & hubble drag info (late-inflaton mass is < Planck mass, but not by a lot) Cosmic Probes Then JDEM-SN + DUNE-WL + Planck1

w(a)=w 0 +w a (1-a) models 45 low-z SN + ESSENCE SN + SNLS 1st year SN + Riess high-z SN, 192 “gold”SN all fit with MLCS illustrates the near-degeneracies of the contour plot

Measuring the 3 parameters with current data Use 3-parameter formula over 0 4)=w h (irrelevant parameter unless large). a s <0.3

Forecast: JDEM-SN (2500 hi-z low-z) + DUNE-WL (50% sky, = , 35/min 2 ) + Planck1yr  s = a s <0.21 (95%CL) Beyond Einstein panel: LISA+JDEM ESA

End