Excitation and contraction of smooth muscle

Slides:



Advertisements
Similar presentations
Muscles and Muscle Tissue: Smooth Muscle Part C2 Prepared by Janice Meeking, W. Rose, and Jarvis Smith. Figures from Marieb & Hoehn 8 th ed. Portions copyright.
Advertisements

LECTURE 21 SMOOTH MUSCLE ANATOMY EXCIT. - CONT. - COUPL.
Smooth Muscle Excitation - Contraction
SMOOTH MUSCLES Dr.Mohammed Sharique Ahmed Quadri Assistant Professor Department Basic Medical Sciences Division of Physiology Faculty of Medicine Almaarefa.
NROSCI/BIOSCI 1070 MSNBIO 2070 Human Physiology
Muscle Specialized for: Types:.
Chapter 10 Muscular Tissue
Chapter 12b Muscles.
Smooth Muscle Physiology. Muscular System Functions Body movement (Locomotion) Maintenance of posture Respiration –Diaphragm and intercostal contractions.
Physiology of Muscles The Sliding Filament Theory
MUSCLE (skeletal, cardiac & smooth) Systems Biology: Tissue & organ Function Block Lecture 13 10/28/09 1:30-3:00pm Ruben Mestril, Ph.D:
MUSCLE PHYSIOLOGY Ass. Prof. Dr. Emre Hamurtekin EMU Faculty of Pharmacy.
The Muscular System- Histology and Physiology
Excitation–Contraction Coupling
WINDSOR UNIVERSITY SCHOOL OF MEDICINE
FROM FASCIA TO FILAMENT
Smooth Muscle Characteristics Not striated Dense bodies instead of Z disks as in skeletal muscle Have noncontractile intermediate filaments Ca 2+ required.
Contraction and Excitation of Smooth Muscle
Dr. Ayisha Qureshi MBBS, MPhil Assistant Professor
SMOOTH MUSCLES Dr.Mohammed Sharique Ahmed Quadri Assistant Professor Department Basic Medical Sciences Division of Physiology Faculty of Medicine Almaarefa.
Physiology of Smooth Muscle
Contraction and Excitation of Smooth Muscles Arsalan Yousuf
صدق الله العظيم الاسراء اية 58. By Dr. Abdel Aziz M. Hussein Lecturer of Medical Physiology Member of American Society of Physiology.
Vertebrate Muscle Anatomy Muscles: convert the chemical energy of ATP into mechanical work.ATP.
Fiber Types Twitch durations vary from 10 to 200 msecs. This variation
Cardiac Muscle Involuntary –heart only Contracts & relaxes continuously throughout life –Contracts without nervous stimulation! –A piece of cardiac muscle.
Skeletal Muscle Physiology How do contractions occur? Remember that muscles are excitable.
Smooth Muscle  Spindle-shaped cells 2-10  m across & ~100  m long  Have a thin endomysium  Organized into longitudinal and circular layers  Found.
Smooth Muscle Unstriated muscle associated with visera. (Compare to skeletal muscle) Controlled by autonomic nervous system, hormones and paracrines. actin/myosin.
More About Cardiac and Smooth Muscle Tissue
Muscular system. Function Movement – Contraction of the muscle Posture – Anti-gravity Respiration Heat generation Communication.
Tenth lecture c- Telany: If the muscle fibres exposed to a contimuous stimulus, resulted either complete or incomplete tetany.
Unit Two: Membrane Physiology, Nerve, and Muscle
Dr. Abdelrahman Mustafa
9-1 Muscular System: Histology and Physiology Chapter 9.
Non-striated Muscle I. Locations of non-striated muscle in vertebrate body GI tract (including internal, but not external sphincters) Blood vessels and.
Kate Phelan Eleni Angelopoulos Anastasia Matkovski
3 Types of Muscle Tissue Properties of Muscle Tissue
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8 Histology and Physiology of Muscles Skeletal Muscle.
Skeletal Muscle Physiology How do contractions occur? Remember that muscles are excitable.
X. Smooth Muscle Tissue.
Copyright © 2010 Pearson Education, Inc. Smooth muscle physiology  Organizational structure & function  Excitation contraction coupling.
U N I T II Textbook of Medical Physiology, 11th Edition GUYTON & HALL Copyright © 2006 by Elsevier, Inc. Chapter 8: Contraction and Excitation of Smooth.
CH 9 Smooth Muscle Tissue J.F. Thompson, Ph.D.. Smooth Muscle Cells nonstriated = smooth uninucleate.
MUSCLE TISSUE. Muscle Tissue If it contracts, it's muscle: Muscle tissue is categorized on the basis of a functional property: the ability of its cells.
SMOOTH MUSCLE Dr. Ayisha Qureshi MBBS, MPhil Assistant Professor.
Muscle Tissue Muscle tissue functions – Movement – Maintain Posture – Joint stabilization – Heat generation (11.5a)
Smooth Muscle Fibers. Spindle shaped One nucleus Organized into sheets Form the walls of: arteries veins, organs.
Types, Properties, Contraction & Relaxation
Highlights of Muscle Physiology From Marieb. Events at the Neuromuscular Junction.
Muscles and Muscle Tissue P A R T C. Muscle Tone Muscle tone: Is the constant, slightly contracted state of all muscles Keeps the muscles firm, healthy,
The Muscular System and Integumentary System Ms. Hoffman September 13, 2004.
Comparison of Properties of: Skeletal, Smooth & Cardiac Muscle Comparison of functional organisation, electrical properties and mechanical properties of.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5pt Structure.
How do muscle cells contract ?. What is the structure of a muscle fiber ? The sarcolemma, or plasma membrane contains invaginations called T (transverse)
Muscle Types and Their Characteristics. Skeletal Muscle Anatomy.
U N I T II Textbook of Medical Physiology, 11th Edition GUYTON & HALL Copyright © 2006 by Elsevier, Inc. Contraction and Excitation of Smooth Muscle.
Smooth Muscle Physiology
Cardiac Physiology The heart: chambers, the valves
Physiology Smooth muscles
Cardiac and Smooth Muscles
Muscular system Part 3: Smooth Muscles.
Muscular System Comparative Anatomy Tony Serino, Ph.D. Biology Dept.
Contraction and excitation of smooth muscle
Comparative Vertebrate Physiology
Cardiac and Smooth Muscle
Muscular system Part 3: Smooth Muscles.
3 Types of Muscle Tissue Properties of Muscle Tissue
Dr.Mohammed Sharique Ahmed Quadri
Production of ATP 1. From creatine phosphate.
Presentation transcript:

Excitation and contraction of smooth muscle

Smooth muscle Important component of many organ systems: GI Ureters, uterus Respiratory system - bronchi Blood vessels Not under voluntary control. Multiple ways of regulation of activity. Glatki mišić u raznim organskim sustavima formira slojeve unutar stijenke šupljih organa i raspodijeljen je duž njihove čitave cirkumferencije u raznim smjerovima. Kontrakcija ili relaksacija glatkog mišića mijenja njihov promjer i mijenja npr. otpor protoku zraka, toku krvi i u probavnom sustavu sudjeluje u miješanju hrane i propulziji.

Types of smooth muscle Multi-Unit Unitary (syncytial or visceral) ciliary muscle and iris muscle of the eye, piloerector muscle Unitary (syncytial or visceral) Multi-unit –each fiber works independently, and innervated by a single nerve ending. Cells are physically separated by the basement-membrane-like substance. In unitary smooth muscle, the cells are closely attached and electrochemically connected through gap junctions.

Physical structure of smooth muscle Contractile unit similar as in skeletal muscle – but no such regularity. Sidepolar arrangement of myosin heads (in skeletal muscle bipolar) Dense bodies instead of Z-discs. Gap junctions omogućuju električnu i kemijsku povezanost. Oni predstavljaju spojeve među stanicama kroz koje mogu slobodno prolaziti ioni i molekule male molekularne mase. Oni omogućuju slobodno širenje akcijskog potencijala iz jedne stanice u drugu. aktinske i miozinske niti (više aktina nego u skeletnom mišiću, manje miozina) pričvršćene na dense bodies (poput Z-ploča) nema pravilne organizacije u sarkomere  nema poprečnih pruga aktinske niti ne sadrže troponin.

Physical structure of smooth muscle Coupling of cells: dense bodies (physical) gap junctions (electrochemical) Gap junctions omogućuju električnu i kemijsku povezanost. Oni predstavljaju spojeve među stanicama kroz koje mogu slobodno prolaziti ioni i molekule male molekularne mase. Oni omogućuju slobodno širenje akcijskog potencijala iz jedne stanice u drugu. aktinske i miozinske niti (više aktina nego u skeletnom mišiću, manje miozina) pričvršćene na dense bodies (poput Z-ploča) nema pravilne organizacije u sarkomere  nema poprečnih pruga aktinske niti ne sadrže troponin.

Regulation of contraction by Ca2+ ions

Smooth muscle cross-bridge cycling Cross-bridge cycle in smooth muscle is slower than in skeletal muscle. Due to slower ATP-ase activity of myosin head. Porast intracelularnog Ca2+ uzrokuje vezanje Ca2+ za kalmodulin. Kompleks Ca-kalmodulin uzrokuje aktivaciju miozin-kinaze koja fosforilira miozin i omogućuje njegovo vezanje za aktin i početak ciklusa poprečnih mostova. Ciklus će trajati (ponavljati se) sve dok razina Ca ne padne toliko da se miozin–kinaza inaktivira. Miozin fosfataze iz citoplazme tada defosforiliraju miozin i onemogućuju daljnje odvijanje ciklusa i prestanak kontrakcije. Zbog toga što početak kontrakcije ide preko posrednika (miozin-kinaza) a ne ide direktnim vezanjem Ca2+ za troponin, za početak kontrakcije u glatkom mišiću je potrebno više vremena nego u skeletnom mišiću. Iako cross-bridge cycle je sličan ciklusu poprečnih mostova iz skeletnog mišića postoji bitna razlika u dinamici: ciklus u glatkom mišiću je znatno sporiji (sporija ATP-azna aktivnost miozinske glavice). To ima više važnih posljedica: Nakon podražaja za kontrakciju, vrhunac kontrakcije se postiže znatno sporije nego u skeletnom mišiću. sporost kontrakcije i relaksacije. Zbog sporosti ciklusa, faza povezanosti između aktina i miozinske glavice traje znatno duže, što ima za posljedicu da se određena razina kontrakcije stanice može održavati uz znatno manju potrošnju ATP-a.  manja potrošnja energije i veća sila kontrakcije

Comparison of smooth muscle to skeletal muscle contraction Slow cycling of myosin bridges (1/10 to 1/100 of skeletal muscle). Fraction of time the cross-bridges remain attached to actin is long  low energy requirement for contraction. Slowness of onset of contraction and relaxation (30 x longer than skeletal muscle). Maximum force of contraction greater than skeletal. “Latch” mechanism: sustained muscle contraction with little use of energy.

“Latch” mechanism slabiji porast Ca2+ kod produljene stimulacije  slabija aktivacija miozin-kinaze  defosforilacija miozinske glavice fosfatazom dok je spojena za aktin  usporenje ciklusa  manja potrošnja ATPa uz održanje kontrakcije

“Latch” mechanism slabiji porast Ca2+ kod produljene stimulacije  slabija aktivacija miozin-kinaze  defosforilacija miozinske glavice fosfatazom dok je spojena za aktin  usporenje ciklusa  manja potrošnja ATPa uz održanje kontrakcije

Control systems of smooth muscle Za razliku od skeletnog misica, u glatkome misicukontrakciju moze izazvati vise razlicitih vrsta podrazaja. Zivcani podrazaji dolaze iz autonomnog zivcanog sustava (simpatikus I parasimpatikus) i pojedini glatki misici imaju receptore I mogu reagirati na obje vrste podrazaja. Hoce li njihova reakcija biti kontrakcija ili relaksacija ovisi o vrsti receptora. Neuromuskularni spoj nije tako dobro organiziran kao u skeletnim misicima. Neurotransmiteri se otpustaju iz prosirenja zivcanih zavrsetaka (varikoziteti). U visejedinicnim misicima, svaka misicna stanica ima dodirni spoj sa zivcem gdje sinapticka pukotina nije velika (slicno kao u skeletnom misicu). DOk u jednojedinicnom misicu, varikoziteti su udaljeniji od misicnih stanica, gdje se neurotransmiter otpusta u izvanstanicnu tekucinu i difundira do stanica (difuzni spoj), te svaka misicna stanica nema dodira sa zivcem. Ekscitacija se tada siri od stanice do stanice kroz gap junctions. Bez obzira na vrstu podrazaja, da bi doslo do kontrakcije,mora doci do porasta Ca u stanici.

Regulation of contraction Contraction/relaxation can be elicited by: Neural stimuli (autonomic nervous system) Hormones (adrenalin, vasopresin, ACh, angiotensin, oxitocin, histamin) i local factors (pO2, pCO2, H+) Mechanical stimulus (strech stress relaxation) Spontanous rhythmicity (pacemaker)

Membrane potential and contraction Akcijski potencijali se javljaju uglavnom u jednojedinicnom misicu, dok za visejedinicni misic ne treba akcijski potencijal. AKcijski potencijali mogu nastati nekim vanjskim podrazajem koji otvara Na ili Ca kanale i dovodi do lokalne depolarizacije I ekscitacije stanice na akcijski potencijal (prvi primjer). U nekim glatkim misicima postoji ritmicka djelatnost (pacemaker), gdje spontane depolarizacije (ritam sporih valova) dovode do okidanja akcijskih potencijala I kontrakcije. Ritam soporih valova je izazvan promjenama aktivnosti Na/K pumpe-smanjena aktivnost depolarizacija (primjer glatki misic u crijevnoj stijenci). U nekim slucajevima istezanje moze dovest I do depolarizacije i Izazivanja akcijskih potencijala I kontrakcije (crijeva). Primjer 3: kontrakcija bez akcijskih potencijala (visejedinicni misic I

Ca2+ and contraction

Ca2+ and contraction Smooth muscle contraction is dependent on extracellular Ca2+ ion concentration Cellular entry of extracellular Ca2+ via: Opening of voltage-gated Ca2+ channel (action potential) Opening of ligand-gated Ca2+ channel (no action potentials) Diffusion of Ca2+ to all intracellular contractile proteins 50x longer latent period than in skeletal muscle.

Ca2+ and contraction Some smooth muscle cells have more developed SR. Faster contraction after excitation.

Latch mechanism slabiji porast Ca2+ kod produljene stimulacije  slabija aktivacija miozin-kinaze  defosforilacija miozinske glavice fosfatazom dok je spojena za aktin  usporenje ciklusa  manja potrošnja ATPa uz održanje kontrakcije