© 2011 Pearson Education, Inc. Convergent Boundaries: Origin of Mountains Earth, 10e - Chapter 14.

Slides:



Advertisements
Similar presentations
Plate Tectonics.
Advertisements

9.1 Continental Drift An Idea Before Its Time
Earth: An Introduction to Physical Geology, 10e
Ch. 20 Sec. 2 Orogeny.
Mountain Building Chapter 10
Edward J. Tarbuck & Frederick K. Lutgens
Convergent Boundaries, Mountain Building, and Evolution of Continents
The main physical features of the Earth. 1 Atlantic Ocean Indian Ocean Pacific Ocean Southern Ocean North America South America Africa Europe Asia Oceania.
Mountain Building.
Prentice Hall EARTH SCIENCE
11.3 Mountains and Plates Mountains and Plates.
Plate Tectonics.
Mountain Belts formed at Divergent and Convergent Boundaries
Mountain building & the evolution of continents
11.2B Folds, Faults, and Mountains
Plate Tectonics. What is Plate Tectonics? According to the plate tectonics theory, the uppermost mantle, along with the overlying crust, behaves as a.
Mountain building & the evolution of continents
Plate Boundaries  According to the Plate tectonic theory, three boundaries exist at the edges of each tectonic plate. 1) Divergent Boundary (Ridge) 2)
Warm Up If erosion stripped off the top of a dome, what would be found? a. The oldest rocks are exposed in the center. b. The oldest rocks are exposed.
mountains, mountain building, & growth of continents
Lecture 4 Outline: Plate Tectonics – Mechanisms and Margins Learning Objectives: What are the types of plate boundaries? What processes occur at different.
Plate Tectonics. Plate Tectonics What is Plate Tectonics The Earth’s crust and upper mantle are broken into sections called plates Plates move around.
Chapter 20 Mountain Building and the Evolution of Continents
Earth’s Layered Structure (Ch. 8.4 in the Text)
Copyright © 2014 All rights reserved, Government of Newfoundland and Labrador Earth Systems 3209 Unit: 4 The Forces Within Earth Reference: Chapters 4,
EVOLUTION/HISTORY OF THE CONTINENTS Chapter 10. Spreading center (divergent boundary) Subduction margin (convergent boundary) Transform fault Island arc.
Complete the worksheets
Essentials of Geology, 9e
Lecture Outlines PowerPoint
Chapter 20 Section 2 Lauren Bauschard Jamie Reed.
Plate tectonics volcanoes EEn Explain how plate tectonics, and volcanoes impact the lithosphere. I. Plate Tectonics Chapter 9, Section 2 A. Actions.
MOUNTAIN BUILDING.
Earth Science, 10e Edward J. Tarbuck & Frederick K. Lutgens.
If erosion stripped off the top of a dome, what would be found?
Mountain Building - Orogenesis. Archimedes’ principle Fig –The mass of the water displaced by the block of material equals the mass of the whole.
EARTH SCIENCE. An Idea Before Its Time Continental Drift  Wegener’s __________________ ________________________hypothesis stated that the continents.
Earth Science 9.3 Theory Tectonic Plates
Continental Drift Chapter 10. Wegener’s Hypothesis  Once a single supercontinent  Started breaking up about 200 mya  Continents drifted to current.
“Deforming the Earth’s Crust”
Forces that Shape the Earth
11 CHAPTER 11 Mountain Building. Factors Affecting Deformation 11.1 ROCK DEFORMATION  Factors that influence the strength of a rock and how it will deform.
Theory of Plate Tectonics Chapter 10.3 pg SPI
Mountain Building Orogenesis – factors that produce a mountain belt.
Plate Tectonics. Continental Drift _________ proposed the theory that the crustal plates are moving over the mantle. This was supported by fossil and.
The theory of plate tectonics states that the lithosphere is divided into 12 large sections (plates) and about 20 smaller ones. These plates ‘float’ on.
Plate Tectonics. Plate Boundaries Causes of Plate Tectonics.
Plate Tectonics Chapter 8. What Is Plate Tectonics? The Earth’s crust and upper mantle are broken into sections called plates Plates move around on top.
Eric H. Christiansen Brigham Young University
Deforming the Earth’s Crust Chapter 4 Section 4
Plate Tectonics Earth Science Chapter 9. Continental Drift  scientific theory proposing the slow, steady movement of Earth’s continents  Alfred Wegener:
Chapter 9 Plate Boundaries.
Deformation of the Crust
8.E.5A.4 Construct explanations for how the theory of plate tectonics accounts for (1) the motion of lithospheric plates, (2) the geologic activities at.
Chapter 9 Plate Tectonics.
Lecture Outlines Physical Geology, 14/e
Lecture Outlines Physical Geology, 10/e
Convergent Plate Boundaries
Warm Up 11/3 What hypothesis states that the continents were once joined to form a single supercontinent? a. continental drift c. plate tectonics b.
Mountain Building “Tectonic Forces at Work”
11.1 Rock Deformation Factors Affecting Deformation
Deforming the Earth’s Crust Chapter 4 Section 4
Chapter 11.3a Mountain Formation.
Crustal Deformation Folds Faults Mountain Building
9-3 Theory of Plate Tectonics
8.E.5A.4 Construct explanations for how the theory of plate tectonics accounts for (1) the motion of lithospheric plates, (2) the geologic activities at.
Chapter 10 section 2 Plate Tectonics.
11.3 –Mountain Formation.
Mountain construction and destruction
Part 3: Plate Interactions
Plate Tectonics & Major Geological Events
Presentation transcript:

© 2011 Pearson Education, Inc. Convergent Boundaries: Origin of Mountains Earth, 10e - Chapter 14

© 2011 Pearson Education, Inc. Mountain Building Mountain building has occurred during the recent geologic past. American Cordillera—the western margin of the Americas from Cape Horn to Alaska, which includes the Andes and Rocky Mountains The Alpine–Himalaya chain The mountainous terrains of the western Pacific

© 2011 Pearson Education, Inc. Mountain Building Older Paleozoic- and Precambrian-age mountains The Appalachians The Urals in Russia Orogenesis is the processes that collectively produces a mountain belt. Includes folding, thrust faulting, metamorphism, and igneous activity

© 2011 Pearson Education, Inc. Mountain Building Several hypotheses have been proposed for the formations of Earth’s mountain belts. With the development of plate tectonics, it appears that most mountain building occurs at convergent plate boundaries.

© 2011 Pearson Education, Inc. Earth’s Major Mountain Belts

© 2011 Pearson Education, Inc. Convergence and Subducting Plates Major features of subduction zones Deep-ocean trench—a region where subducting oceanic lithosphere bends and descends into the asthenosphere Volcanic arc—built upon the overlying plate – Island arc if on the ocean floor or – Continental volcanic arc if oceanic lithosphere is subducted beneath a continental block The forearc region is the area between the trench and the volcanic arc. The backarc region is located on the side of the volcanic arc opposite the trench.

© 2011 Pearson Education, Inc. Convergence and Subducting Plates Dynamics at subduction zones Extension and backarc spreading – As the subducting plate sinks, it creates a flow in the asthenosphere that pulls the upper plate toward the trench. – Tension and thinning may produce a backarc basin.

© 2011 Pearson Education, Inc. Convergence and Subducting Plates Dynamics at subduction zones Compressional regimes – Occurs when the overlying plate advances toward the trench faster than the trench is retreating due to subduction – The resulting compressional forces shorten and thicken the crust.

© 2011 Pearson Education, Inc. Subduction and Mountain Building Island arc mountain building Where two ocean plates converge and one is subducted beneath the other Volcanic island arcs result from the steady subduction of oceanic lithosphere. – Continued development can result in the formation of mountainous topography consisting of igneous and metamorphic rocks.

© 2011 Pearson Education, Inc. The Aleutian Volcanic Island Arc

© 2011 Pearson Education, Inc. Subduction and Mountain Building Andean-type mountain building Mountain building along continental margins Involves the convergence of an oceanic plate and a plate whose leading edge contains continental crust – Exemplified by the Andes Mountains

© 2011 Pearson Education, Inc. Subduction and Mountain Building Andean-type mountain building Building a volcanic arc – Subduction and partial melting of mantle rock generate primary magmas. – Magma is less dense than surrounding rock, so it begins to buoyantly rise. – Differentiation of magma produces andesitic volcanism dominated by pyroclastics and lavas.

© 2011 Pearson Education, Inc. Subduction and Mountain Building Andean-type mountain building Emplacement of plutons – Thick continental crust impedes the ascent of magma. – A large percentage of the magma never reaches the surface and is emplaced as plutons. – Uplift and erosion exposes these massive structures called batholiths (i.e., the Sierra Nevada in California and the Peruvian Andes) – Batholiths are typically intermediate to felsic compositions.

© 2011 Pearson Education, Inc. Andean-Type Plate Margin

© 2011 Pearson Education, Inc. Subduction and Mountain Building Andean-type mountain building Development of an accretionary wedge – An accretionary wedge is a chaotic accumulation of deformed and thrust-faulted sediments and scraps of oceanic crust. – Prolonged subduction may thicken an accretionary wedge enough so that it protrudes above sea level. – Descending sediments are metamorphosed into a suite of high-pressure, low-temperature minerals.

© 2011 Pearson Education, Inc. Subduction and Mountain Building Andean-type mountain building Forearc basin – The growing accretionary wedge acts as a barrier to sediment movement from the arc to the trench. – This region of relatively undeformed layers of sediment and sedimentary rock is called a forearc basin.

© 2011 Pearson Education, Inc. Subduction and Mountain Building The Sierra Nevada and the Coast Ranges One of the best examples of an active Andean-type orogenic belt Subduction of the Pacific basin under the western edge of the North American plate The Sierra Nevada batholith is a remnant of a portion of the continental volcanic arc. The Franciscan Formation of California’s Coast Ranges constitutes the accretionary wedge.

© 2011 Pearson Education, Inc. Mountains and Landforms of the Western United States

© 2011 Pearson Education, Inc. Continental Collisions Two lithospheric plates, both carrying continental crust Continental collisions result in the development of compressional mountains that are characterized by shortened and thickened crust. Most compressional mountains exhibit a region of intense folding and thrust faulting called a fold-and-thrust belt. The zone where the two continents collide is called the suture.

© 2011 Pearson Education, Inc. Major Features of a Compressional Mountain Belt

© 2011 Pearson Education, Inc. Continental Collisions The Himalayan Mountains Youthful mountains—collision began about 45 million years ago. India collided with Eurasian plate. Similar but older collision occurred when the European continent collided with the Asian continent to produce the Ural Mountains.

© 2011 Pearson Education, Inc. Formation of the Himalayas

© 2011 Pearson Education, Inc. Continental Collisions The Appalachian Mountains Formed long ago and substantially lowered by erosion Resulted from a collision among North America, Europe, and northern Africa Final orogeny occurred about 250 million to 300 million years ago.

© 2011 Pearson Education, Inc. Continental Collisions Compressional mountain belts have several major events. After the breakup of a continental landmass, a thick wedge of sediments is deposited along the passive continental margin. Due to a change in the direction of plate motion, the ocean basin begins to close and continents converge.

© 2011 Pearson Education, Inc. Continental Collisions Compressional mountain belts have several major events. Plate convergence, subduction of the intervening oceanic slab, and extensive igneous activity Continental blocks collide. A change in the plate boundary ends the growth of mountains.

© 2011 Pearson Education, Inc. Terranes and Mountain Building Another mechanism of orogenesis The nature of terranes oSmall crustal fragments collide and merge with continental margins. oAccreted crustal blocks are called terranes (any crustal fragments whose geologic history is distinct from that of the adjoining terranes). oPrior to accretion, some of the fragments may have been microcontinents. oOthers may have been island arcs, submerged crustal fragments, extinct volcanic islands, or submerged oceanic plateaus.

© 2011 Pearson Education, Inc. Terranes and Mountain Building Accretion and orogenesis As oceanic plates move, they carry embedded oceanic plateaus, island arcs, and microcontinents to Andean-type subduction zones. Collision of the fragments with the continental margin deforms both blocks, adding to the zone of deformation and to the thickness of the continental margin.

© 2011 Pearson Education, Inc. Fault-Block Mountains Continental rifting can produce uplift and the formation of mountains known as fault- block mountains. Fault-block mountains are bounded by high-angle normal faults that flatten with depth. Examples include the Sierra Nevada of California and the Grand Tetons of Wyoming.

© 2011 Pearson Education, Inc. Fault-Block Mountains Basin and Range Province One of the largest regions of fault-block mountains on Earth Tilting of these faulted structures has produced nearly parallel mountain ranges that average 80 kilometers in length. Extension beginning 20 million years ago has stretched the crust twice its original width. High heat flow and several episodes of volcanism provide evidence that mantle upwelling caused doming of the crust and subsequent extension.

© 2011 Pearson Education, Inc. The Basin and Range Province

© 2011 Pearson Education, Inc. The Teton Range in Wyoming Are Fault-Block Mountains

© 2011 Pearson Education, Inc. End of Chapter 14