© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,

Slides:



Advertisements
Similar presentations
Data Engineering.
Advertisements

Computational Biology Lecture Slides Week 10 Classification (some parts taken from Introduction to Data Mining by Tan, Steinbach, Kumar)
© Tan,Steinbach, Kumar Introduction to Data Mining 8/05/ Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan,
Lecture Notes for Chapter 2 Introduction to Data Mining
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,

Lecture Notes for Chapter 2 Introduction to Data Mining
Data Mining: Concepts and Techniques
CSci 8980: Data Mining (Fall 2002)
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Chapter 3 Data Issues. What is a Data Set? Attributes (describe objects) Variable, field, characteristic, feature or observation Objects (have attributes)
EECS 800 Research Seminar Mining Biological Data
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
1 Business 90: Business Statistics Professor David Mease Sec 03, T R 7:30-8:45AM BBC 204 Lecture 2 = Finish Chapter “Introduction and Data Collection”
Special Topics in Data Mining. Direct Objectives To learn data mining techniques To see their use in real-world/research applications To get an understanding.
COSC 4335 DM: Preprocessing Techniques
Lecture Notes for Chapter 2 Introduction to Data Mining
Data Mining Lecture 2: data.
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 2 = Start chapter 2 Agenda:
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,
Data Mining & Knowledge Discovery Lecture: 2 Dr. Mohammad Abu Yousuf IIT, JU.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining Basics: Data Remark: Discusses “basics concerning data sets (first half of Chapter.
Minqi Zhou Introduction to Data Mining 3/23/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Minqi Zhou.
Data Reduction Strategies Why data reduction? A database/data warehouse may store terabytes of data Complex data analysis/mining may take a very long time.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,
Jeff Howbert Introduction to Machine Learning Winter Machine Learning Data.
What is Data? Attributes
CIS527: Data Warehousing, Filtering, and Mining
1 Data Mining: Data Lecture Notes for Chapter 2. 2 What is Data? l Collection of data objects and their attributes l An attribute is a property or characteristic.
1 Data Mining Lecture 2: Data. 2 What is Data? l Collection of data objects and their attributes l Attribute is a property or characteristic of an object.
1 Chapter 2 Data. What is Data? Collection of data objects and their attributes An attribute is a property or characteristic of an object –Examples: eye.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach,
CSE4334/5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai.
1 What is Data? l An attribute is a property or characteristic of an object l Examples: eye color of a person, temperature, etc. l Attribute is also known.
Tallahassee, Florida, 2016 CIS4930 Introduction to Data Mining Getting to Know Your Data Peixiang Zhao.
3/13/2016Data Mining 1 Lecture 1-2 Data and Data Preparation Phayung Meesad, Ph.D. King Mongkut’s University of Technology North Bangkok (KMUTNB) Bangkok.
CENG 770. Data mining (knowledge discovery from data) – Extraction of interesting ( non-trivial, implicit, previously unknown and potentially useful)
CS 405G: Introduction to Database Systems. 9/29/20162 Review What Is Data Mining? Data mining (knowledge discovery from data) Extraction of interesting.
1 Data Mining Lecture 02a: Data Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors)
Data Preliminaries CSC 600: Data Mining Class 1.
Computational Biology
Lecture Notes for Chapter 2 Introduction to Data Mining
Data Mining Lecture 02a: Theses slides are based on the slides by Data
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
Topics Related to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
CISC 4631 Data Mining Lecture 02:
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture Notes for Chapter 2 Introduction to Data Mining
Lecture 7: Data Preprocessing
Lecture Notes for Chapter 2 Introduction to Data Mining
آبان 96. آبان 96 Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar.
Data Mining Data Last modified 1/16/19.
Lecture 6: Data Quality and Pandas
Lecture Notes for Chapter 2 Introduction to Data Mining
Data Mining Lecture 02a: Theses slides are based on the slides by Data
Lecture Notes for Chapter 2 Introduction to Data Mining
Group 9 – Data Mining: Data
Chapter 2 Data Preprocessing.
Data Preliminaries CSC 576: Data Mining.
Lecture Notes for Chapter 2 Introduction to Data Mining
Data Pre-processing Lecture Notes for Chapter 2
Lecture Notes for Chapter 2 Introduction to Data Mining
Presentation transcript:

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Topics l Type of data l The quality of data l Processing step to make the data more suitable for DM l Similarity measure

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ What is Data? l Collection of data objects and their attributes l An attribute is a property or characteristic of an object –Examples: eye color of a person, temperature, etc. –Attribute is also known as variable, field, characteristic, or feature l A collection of attributes describe an object –Object is also known as record, point, case, sample, entity, or instance Attributes Objects

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Attribute Values l Attribute values are numbers or symbols assigned to an attribute l Distinction between attributes and attribute values –Same attribute can be mapped to different attribute values  Example: height can be measured in feet or meters –Different attributes can be mapped to the same set of values  Example: Attribute values for ID and age are integers  But properties of attribute values can be different –ID has no limit but age has a maximum and minimum value

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Measurement of Length l The way you measure an attribute is somewhat may not match the attributes properties.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Types of Attributes l There are different types of attributes –Nominal  Examples: ID numbers, eye color, zip codes –Ordinal  Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short} –Interval  Examples: calendar dates, temperatures in Celsius or Fahrenheit. –Ratio  Examples: temperature in Kelvin, length, time, counts

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Example

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Discrete and Continuous Attributes l Discrete Attribute –Has only a finite or countably infinite set of values –Examples: zip codes, counts, or the set of words in a collection of documents –Often represented as integer variables. –Note: binary attributes are a special case of discrete attributes l Continuous Attribute –Has real numbers as attribute values –Examples: temperature, height, or weight. –Practically, real values can only be measured and represented using a finite number of digits. –Continuous attributes are typically represented as floating-point variables.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Types of data sets l Record –Data Matrix –Document Data –Transaction Data l Graph –World Wide Web –Molecular Structures l Ordered –Spatial Data –Temporal Data –Sequential Data –Genetic Sequence Data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Important Characteristics of Structured Data –Dimensionality  Curse of Dimensionality –Sparsity  Only presence counts –Resolution  Patterns depend on the scale

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Record Data l Data that consists of a collection of records, each of which consists of a fixed set of attributes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Matrix l If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute l Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Document Data l Each document becomes a `term' vector, –each term is a component (attribute) of the vector, –the value of each component is the number of times the corresponding term occurs in the document.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Transaction Data l A special type of record data, where –each record (transaction) involves a set of items. –For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Graph Data l Examples: Generic graph and HTML Links

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Chemical Data l Benzene Molecule: C 6 H 6

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Ordered Data l Sequences of transactions An element of the sequence Items/Events

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Ordered Data l Genomic sequence data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Ordered Data l Spatio-Temporal Data Average Monthly Temperature of land and ocean

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Quality l What kinds of data quality problems? l How can we detect problems with the data? l What can we do about these problems? l Examples of data quality problems: –Noise and outliers –missing values –duplicate data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Noise l Noise refers to modification of original values –Examples: distortion of a person’s voice when talking on a poor phone and “snow” on television screen Two Sine WavesTwo Sine Waves + Noise

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Outliers l Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Missing Values l Reasons for missing values –Information is not collected (e.g., people decline to give their age and weight) –Attributes may not be applicable to all cases (e.g., annual income is not applicable to children) l Handling missing values –Eliminate Data Objects –Estimate Missing Values –Ignore the Missing Value During Analysis

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Duplicate Data l Data set may include data objects that are duplicates, or almost duplicates of one another –Major issue when merging data from heterogeous sources l Examples: –Same person with multiple addresses l Data cleaning –Process of dealing with duplicate data issues

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Preprocessing l Aggregation l Sampling l Dimensionality Reduction l Feature subset selection l Feature creation l Discretization and Binarization l Attribute Transformation

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Aggregation l Combining two or more attributes (or objects) into a single attribute (or object) l Purpose –Data reduction  Reduce the number of attributes or objects –Change of scale  Cities aggregated into regions, states, countries, etc –More “stable” data  Aggregated data tends to have less variability

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Aggregation Standard Deviation of Average Monthly Precipitation Standard Deviation of Average Yearly Precipitation Variation of Precipitation in Australia

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Sampling l Sampling is the main technique employed for data selection. – It is often used for both the preliminary investigation of the data and the final data analysis. l Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming. l Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Sampling … l The key principle for effective sampling is the following: –using a sample will work almost as well as using the entire data sets, if the sample is representative –A sample is representative if it has approximately the same property (of interest) as the original set of data

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Types of Sampling l Simple Random Sampling –There is an equal probability of selecting any particular item l Sampling without replacement –As each item is selected, it is removed from the population l Sampling with replacement –Objects are not removed from the population as they are selected for the sample.  In sampling with replacement, the same object can be picked up more than once l Stratified sampling –Split the data into several partitions; then draw random samples from each partition

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Sample Size 8000 points 2000 Points500 Points

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Sample Size l What sample size is necessary to get at least one object from each of 10 groups.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Dimensionality Reduction l Purpose: –Avoid curse of dimensionality –Reduce amount of time and memory required by data mining algorithms –Allow data to be more easily visualized –May help to eliminate irrelevant features or reduce noise l Techniques –Principle Component Analysis –Singular Value Decomposition –Others: supervised and non-linear techniques

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Dimensionality Reduction: PCA l Goal is to find a projection that captures the largest amount of variation in data x2x2 x1x1 e

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Dimensionality Reduction: PCA l Find the eigenvectors of the covariance matrix l The eigenvectors define the new space x2x2 x1x1 e

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Dimensionality Reduction: PCA