1 The JHF-Kamioka Neutrino experiment 1.Introduction 2.Overview of the experiment 3.Physics sensitivity in Phase-I 4.Physics sensitivity in Phase-II 5.Summary.

Slides:



Advertisements
Similar presentations
Status of T2K Tokai to Kamioka Neutrino Project at J-PARC June 21, 2004 Koichiro Nishikawa Kyoto University.
Advertisements

Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
A long-baseline experiment with the IHEP neutrino beam Y. Efremenko detector Presented by.
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
The JPARC Neutrino Project – a European Perspective Dave Wark University of Sussex/RAL DESY October 6, 2003.
K2K : KEK-to-Kamioka Long Baseline Neutrino Oscillation Experiment Kenzo NAKAMURA KEK For the K2K Collaboration Les Houches EuroConference on Neutrino.
Near detectors for long baseline neutrino experiments T. Nakaya (Kyoto) 1T. Nakaya.
Neutrino-CH 19 October 2006 Alain Blondel HARP and K2K 1. The K2K experiments 2. beam related uncertainties 3. HARP and results 4. K2K and results 5. conclusions.
Alain Blondel Detectors UNO (400kton Water Cherenkov) Liquid Ar TPC (~100kton)
Superbeam long baseline experiments Takashi Kobayashi KEK Neutrino Summer
Neutrino Study Group Dec 21, 2001 Brookhaven Neutrino Super-BeamStephen Kahn Page 1 Horn and Solenoid Capture Systems for a BNL Neutrino Superbeam Steve.
T2K experiment at J-PARC Epiphany 2010D. Kiełczewska1 For T2K Collaboration Danuta Kiełczewska Warsaw University & Sołtan Institute for Nuclear Studies.
New results from K2K Makoto Yoshida (IPNS, KEK) for the K2K collaboration NuFACT02, July 4, 2002 London, UK.
Future Accelerator-based Oscillation Experiment (JHFnu, Off-axis) Changgen Yang Institute of High Energy Physics Beijing.
JHF2K neutrino beam line A. K. Ichikawa KEK 2002/7/2 Overview Primary Proton beamline Target Decay Volume Strategy to change peak energy.
K. Nakamura NNN05, Aussois, April Overview of Hyper-Kamiokande R&D Kenzo NAKAMURA KEK April 7-9, 2005 NNN05 Aussois, Savoie, France.
J-PARC upgrade T. Nakadaira (KEK / J-PARC). Outline J-PARC overview & on-going program Motivation of future experiment in J-PARC Overview of future experiment.
Sampling Detectors for e Detection and Identification Adam Para, Fermilab NuFact02 Imperial College Interest de jour: what is sin 2 2  13  oscillations.
Future Accelerator Based Neutrino Experiments Takashi Kobayashi Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization.
Neutrino Oscillation Detectors: a (Re?)View Where we are? Where are we going? How do we get there? More questions than answers Adam Para, Fermilab NuFact.
Recent results from the K2K experiment Yoshinari Hayato (KEK/IPNS) for the K2K collaboration Introduction Summary of the results in 2001 Overview of the.
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
Current and Near Future Long Baseline Experiments Stéphane T’Jampens CEA Saclay DSM/DAPNIA/SPP.
Douglas Michael California Institute of Technology NuFACT 03 June 5, 2003 What’s a Super Beam? The Physics Some of the common features Specific Proposals.
Apr. 4, KEK JHF-SK neutrino workshop 1 e appearance search Yoshihisa OBAYASHI (KEK - IPNS)
Long Baseline Experiments at Fermilab Maury Goodman.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Fermilab, May, 2003 Takaaki Kajita, ICRR, U. Tokyo ・ Introduction ・ JHF-Kamioka neutrino project -overview- ・ Physics in phase-I ・ Phase-II ・ Summary Outline.
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Road Map of Future Neutrino Physics A personal view Ken Peach Round Table discussion at the 6 th NuFACT Workshop Osaka, Japan 26 th July – 1 st August.
Bruno Pontecorvo Pontecorvo Prize is very special for us: All the important works done by Super- Kamiokande point back to Bruno Pontecorvo – 1957 First.
1 Super muon-neutrino beam Takashi Kobayashi IPNS, KEK Fact02 July 1, 2002 Imperial College London Contents 1.Introduction 2.“Super-beam” long baseline.
1 DISCOVERY OF ATMOSPHERIC MUON NEUTRINO OSCILLATIONS Prologue First Hint in Kamiokande Second Hint in Kamiokande Evidence found in Super-Kamiokande Nov-12.
JHF-Kamioka Neutrino Oscillation Experiment using JHF 50 GeV PS Y.Itow ICRR,Univ.of Tokyo Jul27,2002 Jul27,2002 ICHEP02 Amsterdam Introduction Facility.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
Hyper-Kamiokande project and R&D status Hyper-K project Motivation Detector Physics potential study photo-sensor development Summary Kamioka.
Yoshihisa OBAYASHI, Oct. Neutrino Oscillation Experiment between JHF – Super-Kamiokande Yoshihisa OBAYASHI (Kamioka Observatory, ICRR)
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
G.F. Pearce 1 θ 23 - experiments Introduction Atmospheric neutrinos –Super Kamiokande –Soudan2 –Macro Long Baseline, accelerator –K2K –Minos –CNGS –Numi.
1 Long Baseline Neutrino Experiment in Japan III International Workshop on “Neutrino Oscillations in Venice” Koichiro Nishikawa Kyoto University February.
1 Recent Results from Neutrino Experiments and Plans for the Neutrino Super Beam in Japan Discovery of neutrino oscillations  finite neutrino masses (
NuFact02, July 2002, London Takaaki Kajita, ICRR, U.Tokyo For the K2K collab. and JHF-Kamioka WG.
Neutrino Oscillations at Homestake from Chlorine to the Megadetector Ancient Origins of the Question ~1860 Darwin publishes “On The Origin of Species”-
Takaaki Kajita, ICRR, Univ. of Tokyo NOW2004, Sep 2004.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 10 September 2013M. Dracos.
Road Map of Neutrino Physics in Japan Largely my personal view Don’t take too seriously K. Nakamura KEK NuFact04 July 30, 2004.
Search for Sterile Neutrino Oscillations with MiniBooNE
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
Accelerator-based Long-Baseline Neutrino Oscillation Experiments Kam-Biu Luk University of California, Berkeley and Lawrence Berkeley National Laboratory.
1 Status of the T2K long baseline neutrino oscillation experiment Atsuko K. Ichikawa (Kyoto univeristy) For the T2K Collaboration.
2 July 2002 S. Kahn BNL Homestake Long Baseline1 A Super-Neutrino Beam from BNL to Homestake Steve Kahn For the BNL-Homestake Collaboration Presented at.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
An experiment to measure   with the CNGS beam off axis and a deep underwater Cherenkov detector in the Gulf of Taranto CNGS.
Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment 2008/07/31 Tomonori Kusano Tohoku University.
Spring school “Bruno Touschek” (19 th May 2005) C. Mariani (INFN Rome) May 19 th, LNF Spring School “ Bruno Touschek ”
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
Neutrino Interaction measurement in K2K experiment (1kton water Cherenkov detector) Jun Kameda(ICRR) for K2K collaboration RCCN international workshop.
Neutrino physics: The future Gabriela Barenboim TAU04.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
Status of Super-Kamiokande, K2K and JHF ACFA LC Yuichi Oyama (KEK) for Super-Kamiokande collaboration, K2K collaboration and JHF collaboration.
T2K Oscillation Strategies Kevin McFarland (University of Rochester) on behalf of the T2K Collaboration Neutrino Factories 2010 October 24 th 2010.
The XXII International Conference on Neutrino Physics and Astrophysics in Santa Fe, New Mexico, June 13-19, 2006 The T2K 2KM Water Cherenkov Detector M.
Experiments to detect q13
Yoshihisa OBAYASHI (KEK - IPNS)
Prospects of J-PARC Neutrino Program
T2KK sensitivity as a function of L and Dm2
Fine-Grained Near Detector(s) at JHF: Purpose and Thoughts
Naotoshi Okamura (YITP) NuFact05
Conventional Neutrino Beam Experiment : JHF – Super-Kamiokande
Presentation transcript:

1 The JHF-Kamioka Neutrino experiment 1.Introduction 2.Overview of the experiment 3.Physics sensitivity in Phase-I 4.Physics sensitivity in Phase-II 5.Summary and Conclusion Tsuyoshi NAKAYA (Kyoto U.) for JHF-SK working group Jan 16, JHF is an tentative name, and will be renamed soon.

2 JHF-SK Neutrino Working Group ICRR/Tokyo-KEK-Kobe-Kyoto-Tohoku-TRIUMF 15,5 Y. Itow, T. Kajita, K. Kaneyuki, M. Shiozawa, Y. Totsuka (ICRR/Tokyo) Y. Hayato, T. Ishida, T. Ishii, T. Kobayashi, T. Maruyama, K. Nakamura, Y. Obayashi, M. Sakuda (KEK) S. Aoki, T.Hara, A. Suzuki (Kobe) A. Ichikawa, T. Nakaya, K. Nishikawa (Kyoto) T. Hasegawa, K. Ishihara, A. Suzuki (Tohoku) A.Konaka (TRIUMF, CANADA) In addition to the above user group, the neutrino facility construction group is OFFICIALLY formed at KEK.

3 1.Introduction ~1GeV beam Kamioka JAERI (Tokaimura) 0.77MW 50 GeV PS ( conventional beam) Super-K: 22.5 kt 4MW 50 GeV PS Hyper-K: 1000 kt Phase-I (0.77MW + Super-K) Phase-II (4MW+Hyper-K) ~ Phase-I  200 The experiment will start in 2007.

4 Lepton Sector Mixing  12,  23,  13 +   m 2 12,  m 2 23 MNS (Maki-Nakagawa-Sakata) matrix

5 oscillation at  23 ~  /4 and  13 ~0

6 Targets of JHF-SK experiment Confirmation of    Discovery of   e  at  m 2 atm. Precise measurement of neutrino oscillation. (observation of oscillation peak) CP violation in neutrino oscillation. Confirm or Reject LSND anomaly.

7 2. Overview of the experiment Construction 2001 ~ 2006 (approved) JHFMINOSK2K E(GeV) Int.(10 12 ppp ) Rate(Hz) Power(MW ) (60km N.E. of KEK) Super Conducting magnet for beam line Near POT(130day)≡ “1 year”

8 beam at JHF Principle –Intense Narrow Band Beam –Beam energy is tuned to be at the oscillation maximum. High sensitivity Less background –~1 GeV beam energy for Quasi-elastic interaction. E (reconstruct) – E (True) (MeV)  m 2 =1.6~4x10 -3 eV 2 E =0.4~1.0GeV  =80MeV  + n →  + p  p ( E , p  )

9 Off Axis Beam WBB w/ intentionally misaligned beam line from det. axis (ref.: BNL-E889 Proposal)  Target Horns Decay Pipe Far Det. ~ 3100 int./22.5kt/yr w/ 80m long decay volume e : 1.0% peak) Decay Kinematics ~2° E (Present design; 130m  40% more  )

10 detectors at JHF 1 Mton (fiducial) volume: Total Length 400m (8 Compartments) Super-K 40m Total Length 400m (8 Compartments) Phase-I: Suker-K 22.5kt (50kt) Phase-II: Hyper-K 1Mton (fiducial) volume: We are investigating the possible site at Kamioka. 70m

11 Near Detectors ( Detectors at two locations are (1~10 events/spill/100ton) Fine Grained w/ magnet. –Measure direction and spectrum. –Measure wrong sign component (see CP section). –Will be used for interaction study with NBB. –Non-oscillation (0.1 events/spill/100ton) Water Cherenkov + Fine Grained –Measure spectrum and e background since they are same as those at Kamioka. –Test LSND anomaly if Mini-Boone failed to test it or discovered the new physics.

12 Far/Near Spectrum Ratio spectrum 0.28km 1.5km 295km At >1.5km, the source is treated as a point source  Low Ep High Ep

13 3. Physics sensitivity in Phase-I (w/ Super-K) 5years (5  POT) running  precise measurement of  m  2   23 and  13    (  m  2   23 )   e (  13, open window for CP study)    w/ NC interactions. (confirmation) stringent limit on the non-oscillation scenario and the existence of s. Sensitivity (goal):  sin 2 2    sin 2 2    CL   m  2    eV 2 at  sin 2 2  m 2    eV 2 

14   →  confirmation w/ NC interaction NC  0 interaction ( + N → + N +  0 )    e CC + NC(~0.5CC) ~0 (sin 2 2   e ~0)  CC + NC(~0.5CC) ~0 (maximum oscillation)   NC #  0 is sensitive to  flux. Limit on s (  f( s)~0.1 ) OAB      s  =390±44 #  0 + #e-like  m       CC NC

15  e appearance  C.C.  N.C.Beam e Osc’d e Generated ring e-like red. eff.0.1%6.1%23.4%67.5% e/  0 sep red.eff.0.03%0.6%7.5%50.4%.4<E < red.eff.0.02%0.2%3.8%40.8% e 00

16 e appearance Background rejection against NC  0 is improved. sin 2 2   e =0.05 (sin 2 2   e  0.5sin 2 2  13 ) 3×10 -3 ×20 improvement CHOOZ sin 2 2   e m2m2

17  disappearance 1ring FC  -like Reconstructed E (MeV) Oscillation with  m 2 =3×10 -3 sin 2 2  =1.0 No oscillation Non-QE (linear) (log)  m 2 =3×10 -3 sin 2 2  =1.0 ~3% Ratio after BG subtraction m2m2 sin 2 2   sin 2 2     m  2    eV 2 Fit with 1-sin 2 2  ・ sin 2 (1.27  m 2 L/E)

18 4. Physics sensitivity in Phase-II (w/ Hyper-K) 2 years ( 10  POT ) for  and 6 years ( 30  POT ) for  running  Search for CP violation in oscillation. standard:   e vs   e non-standard:    vs    w/ NC  Search for   e  Search for proton decays. Sensitivity (goal): sin 2 2      CL     discovery  at  m 12 2    eV 2  m 23 2    eV 2   proton B(p  e  0, K) > years

19 CP violation in oscillation L=295km : small matter effect E ~1 GeV : large CP asymmetry  A cp

20    flux for CP violation search.   POT/yr (1st phase) Sign flip by change of horn plarity Flux CC interaction   Wrong sign BG cross section difference

21 CP Violation Study Compare   e with   e N(e - ) N(e + ) NO CP violation w/o matter effect.  m 12 2    eV 2   m 23 2    eV 2 sin 2 2          discovery 

22 5. Summary and Conclusion The experiment is expected to start in 2007 at the same time of the completion of JHF 50 GeV PS. –The experiment is not approved yet, and we need your STRONG support to put the experiment on track. The features of the experiment are: –MW class 50 GeV proton accelerator (0.77MW  4MW) –~1GeV Narrow band neutrino beam at the oscillation maximum (L=295km). –Gigantic Water Cherenkov detectors with/ neutrino energy reconstruction by quasi-elastic interaction. (22.5kton  1000kton)

23 Physics Reach (see hep-ex/ ) Phase-I (0.77MW kt): NC interaction:  Establish    and limit on   s    :  sin 2 2      e : sin 2 2    CL     :  m  2    eV 2 at  sin 2 2  m 2    eV 2  Phase-II (4MW kt):   e : sin 2 2      CL    e vs   e :    discovery  at  m 12 2    eV 2  m 23 2    eV 2   proton B(p  e  0, K) > years