3:00 2:59 2:58 2:57 2:56 2:55 2:54 2:53 2:52 2:51 2:50 2:49 2:48 2:47 2:46 2:45 2:44 2:43 2:42 2:41 2:40 2:39 2:38 2:37 2:36 2:35 2:34 2:33 2:32 2:31 2:30.

Slides:



Advertisements
Similar presentations
Periodic Trends OBJECTIVES:
Advertisements

Periodic Table and Periodic Trends Notes
Periodic Trends (SL) OBJECTIVES:
Chem 11. Atomic Size The electron cloud doesn’t have a definite edge. They get around this by measuring more than 1 atom at a time. Summary: Atomic.
Electron Configuration and Periodic Properties
1/8/09 Warm Up: The observed regularities in the properties of the elements are periodic functions of their Atomic numbers Mass numbers Oxidation states.
Ch 5.3 Electron Configuration and Periodic Properties
Periodic Trends Chapter 6 Section 3.
Ch 5.3 Electron Configuration and Periodic Properties
The Periodic Law says: PERIODIC LAW states that when elements are arranged in order of increasing atomic number, there is a periodic repetition of their.
Done By Lecturer: Amal Abu- Mostafa.  OBJECTIVES: ◦ Describe periodic trends for:  A) Atomic and Ionic sizes.  B) Ionization energy.  C) Electron.
Chapter 5 Review Play slide show. Correct answer appears in blue.
Chapter 12 The Periodic Table
Chapter 14 Chemical Periodicity
Why do the atoms of elements get smaller when moving from left to right within a row (period) across the periodic table?
The Periodic Table The how and why.
Periodic Trends. Groups: vertical columns (1-18) Groups: vertical columns (1-18) Have similar properties because have same number of electrons in outer.
1 Periodic Trends. 2 Early Design Changes developed by Dmitri Mendeleev in the mid- 1800s –Organized elements by mass into rows and columns –Found elements.
1 Chapter 7 Atomic Structure. 2 Periodic Trends n Ionization energy the energy required to remove an electron form a gaseous atom n Highest energy electron.
Section 14.2 Periodic Trends
Chapter 8 The Periodic Table. What is the Periodic Table good for?
Periodic Table Trends & Definitions. How to read the Periodic Table 6 C Carbon Atomic Number Elemental Symbol Elemental Name Atomic Mass.
Periodic Properties and Trends Atomic Radii Size Increases going down a group.Size Increases going down a group. Because electrons are added further.
Periodic Trends Section 6.3
Periodic Trends.
ALL Periodic Table Trends
The Periodic Table. History u Russian scientist Dmitri Mendeleev taught chemistry u Mid molar masses of elements were known. u Wrote down the elements.
Periodic Table Trends. Atomic Radius As you move down a group, atomic radius increases The number of energy levels increases as you move down a group.
Unit 5 The Periodic Table The how and why. Newlands u Arranged known elements according to properties & order of increasing atomic mass u Law of.
Periodic Trends Chapter 6. Octet Rule Atoms tend to achieve electron configuration of Noble Gases Octet = Eight Noble Gases have eight electrons in their.
Periodic Table Alkali Metals Group 1A Alkaline Metals Group 2A Transition Metals Group B Metalloids (7) Purple elements Halogens Group 7A Noble Gases Group.
Periodic Trends OBJECTIVES:
The how and why History Dmitri Mendeleev u Russian scientist Dmitri Mendeleev taught chemistry in terms of properties. u Mid molar masses of elements.
4 Periodic Trends: 1) Atomic Radius 2) Ionic Radius 3) Ionization Energy 4) ElectroNegativity ibchem.com/IB/ibfiles/periodicity/per_ppt/pt_trends.ppt.
Periodic Table Trends. (1) Atomic Radius As one goes from left to right across a period, the atomic radii decreases. Reason: All the elements in a period.
TRENDS IN THE PERIODIC TABLE. Important Definitions  Trend : predictable change in a particular direction  Electron Shielding : inner electrons shield.
© Copyright Pearson Prentice Hall Slide 1 of 31 Periodic Trends > Types of Periodic Trends 4 Periodic Trends 1.Atomic Radii (AR) 2.Ionization Energy (IE)
Periodicity: The arrangement of the elements in order of their atomic numbers so that elements with similar properties fall in the same column, or group.
Periodic Trends.
I II III Periodic Trends. Valence Electrons  Electrons available to be lost, gained, or shared in the formation of chemical compounds  Outer energy.
Periodicity  Atomic Radius = half the distance between two nuclei of a diatomic molecule. } Radius.
Periodic Trends The physical and chemical properties of the elements are periodic functions of their atomic numbers.
Periodic Trends. Periodic Law zWhen elements are arranged in order of increasing atomic #, elements with similar properties appear at regular intervals.
Chemistry Riddle Q: What is a robber’s least favorite element?
Periodic Trends. Atomic Size The electron cloud doesn’t have a definite edge. Scientists get around this by measuring more than 1 atom at a time. Summary:
Trends in the Periodic Table. Organization Mendeleev: atomic mass but some problems Moseley: atomic number Periodic Law: when elements are arranged with.
Periodic Trends. Atomic Size u First problem where do you start measuring. u The electron cloud doesn’t have a definite edge. u They get around this by.
Chapter 6 “The Periodic Table Revisited”. Section 6.1 Organizing the Elements u OBJECTIVES: Explain how elements are organized in a periodic table.
Periodicity Unit Part 3. Periodic Law When arranged by increasing atomic number, the chemical elements display a regular and repeating pattern of chemical.
Periodicity. Classification of the Elements u OBJECTIVES: Explain why you can infer the properties of an element based on those of other elements in the.
Atomic Size u Atomic Radius = half the distance between two nuclei of a diatomic molecule. } Radius.
Chemical Periodicity Trends in the periodic table.
Hydrogen and Helium Hydrogen does not share the same properties as the elements of group 1. Helium has the electron configuration of group 2 elements however.
ALL Periodic Table Trends Influenced by three factors: 1. Energy Level –Higher energy levels are further away from the nucleus. 2. Charge on nucleus (#
The Periodic Table Periodic Trends.
Write the Complete Electron Configuration for:
Periodic Trends.
Periodic Trends OBJECTIVES:
Identifying the patterns
Periodic Table Trends.
Atomic Size First problem where do you start measuring.
Unit 2: Electrons & Periodic Behavior
Aim: How do we perfect our knowledge of the periodic table?
TRENDS IN THE PERIODIC TABLE.
Aim: What are some trends in the periodic table?
Section 3 Trends and the Periodic Table
Periodic Trends.
Periodic Trends.
Presentation transcript:

3:00 2:59 2:58 2:57 2:56 2:55 2:54 2:53 2:52 2:51 2:50 2:49 2:48 2:47 2:46 2:45 2:44 2:43 2:42 2:41 2:40 2:39 2:38 2:37 2:36 2:35 2:34 2:33 2:32 2:31 2:30 2:29 2:28 2:27 2:26 2:25 2:24 2:23 2:22 2:21 2:20 2:19 2:18 2:17 2:16 2:15 2:14 2:13 2:12 2:11 2:10 2:09 2:08 2:07 2:06 2:05 2:04 2:03 2:02 2:01 2:00 1:59 1:58 1:57 1:56 1:55 1:54 1:53 1:52 1:51 1:50 1:49 1:48 1:47 1:46 1:45 1:44 1:43 1:42 1:41 1:40 1:39 1:38 1:37 1:36 1:35 1:34 1:33 1:32 1:31 1:30 1:29 1:28 1:27 1:26 1:25 1:24 1:23 1:22 1:21 1:20 1:19 1:18 1:17 1:16 1:15 1:14 1:13 1:12 1:11 1:10 1:09 1:08 1:07 1:06 1:05 1:04 1:03 1:02 1:01 1:00 0:59 0:58 0:57 0:56 0:55 0:54 0:53 0:52 0:51 0:50 0:49 0:48 0:47 0:46 0:45 0:44 0:43 0:42 0:41 0:40 0:39 0:38 0:37 0:36 0:35 0:34 0:33 0:32 0:31 0:30 0:29 0:28 0:27 0:26 0:25 0:24 0:23 0:22 0:21 0:20 0:19 0:18 0:17 0:16 0:15 0:14 0:13 0:12 0:11 0:10 0:09 0:08 0:07 0:06 0:05 0:04 0:03 0:02 0:01 0:00 Do Now Name one element that has similar chemical properties to calcium and why they are chemically similar. Any element in the same group is chemically similar because it would have the same number of valence electrons.

Trends in the Periodic Table

Influenced by three factors 1. Energy Level A higher energy level is further away. 2. Charge on nucleus (# protons) More charge pulls electrons in closer. 3. Shielding effect (a blocking effect?)

#1. Atomic Size - Group trends As we go down a group: each atom has another energy level, so the atoms get bigger. H Li Na K Rb

#1. Atomic Size - Period Trends Going from left to right across a period, the size gets smaller. Electrons are in the same energy level. But, there is more nuclear charge. Outermost electrons are pulled closer. NaMgAlSiPSClAr

Atomic Number Atomic Radius (pm) H Li Ne Ar 10 Na K Kr Rb 3 Period 2

Atomic size increases in these directions:

#2. Trends in Ionization Energy Ionization energy is the amount of energy required to completely remove an electron to form an ion. Removing one electron makes a 1+ ion. The energy required to remove only the first electron is called the first ionization energy.

Ionization Energy The second ionization energy is the energy required to remove the second electron. Always greater than first IE. The third IE is the energy required to remove a third electron. Greater than 1st or 2nd IE.

SymbolFirstSecond Third H He Li Be B C N O F Ne

What factors determine IE The greater the nuclear charge, the greater IE. Greater distance from nucleus decreases IE

Shielding The electron on the outermost energy level has to look through all the other energy levels to see the nucleus. Second electron has same shielding, if it is in the same period

Ionization Energy - Group trends As you go down a group, the first IE decreases because... The electron is further away from the attraction of the nucleus There is more shielding.

Ionization Energy - Period trends All the atoms in the same period have the same energy level. Same shielding. But, increasing nuclear charge So IE generally increases from left to right.

First Ionization energy Atomic number He He has a greater IE than H. Both elements have the same shielding since electrons are only in the first level But He has a greater nuclear charge H

First Ionization energy Atomic number H He Li has lower IE than H more shielding further away l These outweigh the greater nuclear charge Li

First Ionization energy Atomic number H He Li Be B C N O F Ne Na

3:00 2:59 2:58 2:57 2:56 2:55 2:54 2:53 2:52 2:51 2:50 2:49 2:48 2:47 2:46 2:45 2:44 2:43 2:42 2:41 2:40 2:39 2:38 2:37 2:36 2:35 2:34 2:33 2:32 2:31 2:30 2:29 2:28 2:27 2:26 2:25 2:24 2:23 2:22 2:21 2:20 2:19 2:18 2:17 2:16 2:15 2:14 2:13 2:12 2:11 2:10 2:09 2:08 2:07 2:06 2:05 2:04 2:03 2:02 2:01 2:00 1:59 1:58 1:57 1:56 1:55 1:54 1:53 1:52 1:51 1:50 1:49 1:48 1:47 1:46 1:45 1:44 1:43 1:42 1:41 1:40 1:39 1:38 1:37 1:36 1:35 1:34 1:33 1:32 1:31 1:30 1:29 1:28 1:27 1:26 1:25 1:24 1:23 1:22 1:21 1:20 1:19 1:18 1:17 1:16 1:15 1:14 1:13 1:12 1:11 1:10 1:09 1:08 1:07 1:06 1:05 1:04 1:03 1:02 1:01 1:00 0:59 0:58 0:57 0:56 0:55 0:54 0:53 0:52 0:51 0:50 0:49 0:48 0:47 0:46 0:45 0:44 0:43 0:42 0:41 0:40 0:39 0:38 0:37 0:36 0:35 0:34 0:33 0:32 0:31 0:30 0:29 0:28 0:27 0:26 0:25 0:24 0:23 0:22 0:21 0:20 0:19 0:18 0:17 0:16 0:15 0:14 0:13 0:12 0:11 0:10 0:09 0:08 0:07 0:06 0:05 0:04 0:03 0:02 0:01 0:00 Do Now Which atom is larger and why: Ca or Ba Which atom has a higher ionization energy and why: Na or Fr

#3. Trends in Electronegativity Electronegativity is the tendency for an atom to attract electrons to itself when it is chemically combined with another element. They share the electron, sometimes it’s not equal sharing. An element with a large electronegativity pulls electrons toward itself strongly!

Electronegativity Group Trend Down a group Electrons are farther from the nucleus More electrons cause shielding, Atoms are more willing to share electrons. Low electronegativity.

Electronegativity Period Trend Metals On the left of the table. They let their electrons go easily low electronegativity Nonmetals At the right end of the PT They want more electrons. They try to take them away from others High electronegativity.

The arrows indicate the trend: Ionization energy and Electronegativity INCREASE in these directions