1 / 31 Reionization of Universe: 3D Radiative Transfer Simulations T. Nakamoto (Univ. of Tsukuba) 1. Why Reionization ? 2. TsuCube Project 3. Toward a.

Slides:



Advertisements
Similar presentations
Simulating Cosmological Radiative Transfer (or: How to Light Up The Universe) Introduction: Behind the term radiative transfer hides a theory that mathematically.
Advertisements

Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
Moriond, La Thuile 18. mar, cmFAST 21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal Andrei Mesinger Princeton University.
Lyman  — The Great Escape Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet DFS Annual Meeting 2009 Supervisors:
Formation of Globular Clusters under the Influence of Ultraviolet Radiation Dynamical Evolution of GCs ResultsResults Kenji Hasegawa & Masayuki Umemura.
21cm Constraints on Reionization Benedetta Ciardi MPA T. Di Matteo (CMU), A. Ferrara (SISSA), I. Iliev (CITA), P. Madau (UCSC), A. Maselli (MPA), F. Miniati.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
The Dark Age… before the stars, beyond the galaxies…
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
Chamber Dynamic Response Modeling Zoran Dragojlovic.
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
Escape of Ionizing Radiation From Galaxies Nick Gnedin.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 8 “Radiative Transfer” Dr. Eugene Cordero San Jose State University.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
14/06/2007 Sebastiano Cantalupo - HCRI Allahabad QSO proximity regions in Lyα emission (and absorption) during HI Reionization Sebastiano Cantalupo.
Evolution in Lyman-alpha Emitters and Lyman-break Galaxies Masao Mori Theoretical Astrophysics division, Center for Computational Sciences, University.
Rupert Croft (Carnegie Mellon). Studing Radiation-Induced LSS: Motivation We know a lot about the growth of large-scale structure due to gravitational.
AGN downsizing は階層的銀河形成論で 説明できるか? Motohiro Enoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ.)
Feedback Effects of the First Stars on Nearby Halos Kyungjin Ahn The University of Texas at Austin The End of the Dark Ages STSCI March 13, 2006.
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
Radiative Feedback Effects of the First Objects in the Early Universe Kyungjin Ahn The University of Texas at Austin East-Asia Numerical Astrophysics Meeting.
Benedetta Ciardi MPA Reionization Nucleosynthesis ‘Dark Ages’ Big Bang Fluctuations begin to condense into first stars and protogalaxies Decoupling matter-radiation.
Helium, dust and frequencies Recent improvements in SimpleX2 Chael Kruip Jan-Pieter Paardekooper Vincent Icke.
Monte-Carlo Simulation of Thermal Radiation from GRB Jets Sanshiro Shibata (Konan Univ.) Collaborator: Nozomu Tominaga (Konan Univ., IPMU)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
An introduction to the MULTI radiative transfer code Lars Heggland Institute of Theoretical Astrophysics, University of Oslo Kwasan Observatory, Kyoto.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
Lyman- Emission from The Intergalactic Medium
How Well Do We Know Stellar Populations? Nick Gnedin.
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
1 / 16 Numerical Simulations for Reionization of the Universe Nakamoto, T. (Univ. of Tsukuba) Hiroi, K. Umemura, M. 1. Why Reionization by 3-D RT ? 2.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Effects of early reionization on the formation of galaxies Hajime Susa Rikkyo University.
Japan-Italy Mini-Workshop Jan, 2009 Center for Computational Sciences, University of Tsukuba.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
March 27, 2008 Milan Raicevic ICC, Durham University Studying the role of inhomogeneous reionization in galaxy formation with GALFORM and SimpleX Collaborators:
Observing galaxies at z = 8.8 — is it worth the effort? | Niels Bohr Institutet | Københavns Universitet Peter Laursen, with.
Feedback Effects of the First Stars on Nearby Halos Kyungjin Ahn The University of Texas at Austin The End of the Dark Ages STSCI March 13, 2006.
What the Formation of the First Stars Left in its Wake.
Monte Carlo Photoionization Simulations of Diffuse Ionized Gas Kenneth Wood University of St Andrews In collaboration with John Mathis, Barbara Ercolano,
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Basic Definitions Specific intensity/mean intensity Flux
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Chapter 9 Stellar Atmospheres. Specific Intensity, I I ( or I ) is a vector (units: W m -2 Hz -1 sterad -1 )
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
AlbaNova, Stockholm 18. aug, cmFAST 21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal Andrei Mesinger Princeton University.
Ilian T. Iliev Canadian Institute for Theoretical Astrophysics/University of Zurich with Garrelt Mellema (Stockholm), Jane Arthur, Will Henney (UNAM, Morelia),
Reionization of the Universe MinGyu Kim
Towards Realistic Modeling of Massive Star Clusters Oleg Gnedin (University of Michigan) graduate student Hui Li.
Proximity Effect Around High-redshift Galaxies
Radiative transfer in galactic disks…
X-Rays -> see you at COSPAR in July; also Kawai’s talk this conf.
Observing galaxies at z = 8.8
Dust. LyGalaxies Nyborg, 2008
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
Lyman α – impact of the intergalactic medium
Ly Scattering in Young Galaxies
Radiation Hydrodynamics with HMCS
Gabriel Altay Advisor: Rupert Croft Partner in Crime: Inti Pelupessy
Constraint on Cosmic Reionization from High-z QSO Spectra
Effects of early reionization on the formation of galaxies
Presentation transcript:

1 / 31 Reionization of Universe: 3D Radiative Transfer Simulations T. Nakamoto (Univ. of Tsukuba) 1. Why Reionization ? 2. TsuCube Project 3. Toward a New Code

2 / Why Reionization ? -Radiation Feedback ---- Effects for Following Generation - Photoionization - Photodissociation - Photo Heating -Observation ---- Probe for First Generation - Emissions - Absorptions 1. Why Reionization ?

3 / 31 3D Reionization Calculations ・ Photon Conservation Method (+ Tree Method) Abel et al. 1999, Abel & Wandelt 2001, Razoumov et al ・ Direct Incident Radiation Ciardi et al. 2001, Susa & Umemura ・ Local Optical Depth Approx. Gnedin 2000 ・ Optically Thin Variable Eddington Tensor Formalism Gnedin & Abel 2001 ・ Full 3D Radiative Transfer Nakamoto, Umemura, & Susa 2001 w/ HD + Stellar source w/o HD + QSO source

4 / 31 (Abel & Wandelt 2002) Adaptive Ray Tracing

5 / 31 Razoumov et al. 2002

6 / 31 Ciardi et al Monte Carlo HD + RT (post processing)

7 / 31 3D RHD: Cosmic Reionization (Gnedin 2000) T n gas X HI z = 9 Cosmological HD ~ M sun RT (Local Optical Depth Approx.) Star Formation H, He H 2 form/dest

8 / 31 Optically Thin Variable Eddington Tensor (Gnedin & Abel 2001) LOD OTVET X HI

9 / 31 N 3 = in (8Mpc) 3, N angle = Radiative Transfer Ionization Equilibrium Isotropic background UV: I 21 =0.1 Zel’dovich approximation: z = 15 An Example: Evolution of Ionization State Nakamoto, Umemura, & Susa Why Reionization ? Neutral Fraction:

10 / 31 Z=9 Z=5 Z=7 Z=15 I 21 =0.1 Reionization History of an Inhomogeneous Universe 1. Why Reionization ?

11 / 31 Shadowing Effect InhomogeneousHomogeneous

12 / 31 3D Reionization Calculations ・ Photon Conservation Method (+ Tree Method) Abel et al. 1999, Abel & Wandelt 2001, Razoumov et al ・ Direct Incident Radiation Ciardi et al. 2001, Susa & Umemura ・ Local Optical Depth Approx. Gnedin 2000 ・ Optically Thin Variable Eddington Tensor Formalism Gnedin & Abel 2001 ・ Full 3D Radiative Transfer Nakamoto, Umemura, & Susa 2001 w/ HD + Stellar source w/o HD + QSO source

13 / TsuCube Project Comparisons of 3D RT codes Common Test Problem(s) Groups/Codes: * CRASH (Ferrara, Ciardi, Maselli) * CORAL (Iliev) * OVTET (Gnedin, Abel) * Cen * Razoumov * Tsukuba (Nakamoto, Umemura, Hiroi)

14 / 31 I-front propagation (Time Dependence) UV each grid point computation speed Test Problem 1: Input Output no dynamics

15 / 31 Radiation Energy Density Distance Tsukuba's Current Code: Short Characteristics Method max: x Not good for a point source (Better for diffuse radiation)

16 / 31 Improvement of Our Code: ART (Accurate RT) Time Dependence Accuracy (Speed) 3. Toward a New Code

17 / 31 Time Dependece Current Status: 1D: OK 2D: now struggling 3D: next step

18 / 31 N x N y N z N  N  N Cost 〜 Ray = Group of Segments Suitable for large simulation, though its accuracy is limited. Short Characteristics Method (Kunasz&Auer 1988) Good- # of Operation = Small - Simple Bad- Numerical Diffusion Accuracy & Speed

19 / 31 Numerical Diffusion Long Char.Short Char.

20 / 31 ART (Accurate/Accelerated Ray Tracing) Method N x N y N z N  N  N Cost 〜 This has good points of both the Long Char. & the Short Char. Radiation - On a radiation mesh Quantities on Hydro Mesh - Interpolated from values on the radiation mesh. Good- # of Operation = Small - Small Numerical Diff. Bad- Complicated

21 / 31 ART Accuracy of ART ~ Long Char. Quite small numerical diffusion

22 / 31 Computational Time If… Space = N 2 Angle = 1 Frequency = 1 Long Char. ~ N 3 Short Char. ~ N 2 ART ~ N 2 Theoretical Predicted timing (2D-Plane case) N 3 N 2 Measured Time (WS) Time [sec] Space Grid Size = N Long Char. ART Short Char.

23 / 31 r Energy Density SC (2D: 32 2 x 1024)

24 / 31 SC (2D: 32 2 x 1024)

25 / 31 2D N×N mesh Y N N X N angle O

26 / 31 r Energy Density ART (2D: 32 2 x 1024)

27 / x 256 Source (emitting toward One quadrant) Vacuum Grids: Space = 32x32, Angle = 256 (= 64 x 4)

28 / 31 ART (2D: 32 2 x 1024)

29 / 31 ART (2D: 32 2 x 64)

30 / 31 SC (2D: 32 2 x 64)

31 / Summary * Reionization Simulations * TsuCube Project: Comparison of 3D RT Codes * Developement of a New Code 3D Time Dependece Accuracy Speed