Research fueled by: Frontiers in Materials: Spintronics Strasboug, France May 13 th, 2012 Expecting the unexpected in the spin Hall effect: from fundamental.

Slides:



Advertisements
Similar presentations
Topological Insulators
Advertisements

Spintronics: How spin can act on charge carriers and vice versa
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
New developments in the AHE: New developments in the AHE: phenomenological regime, unified linear theories, and a new member of the spintronic Hall family.
JAIRO SINOVA Research fueled by: New Horizons in Condensed Matter Physics Aspen Center for Physics February 4 th 2008 Theory challenges of semiconducting.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
The quantum AHE and the SHE The persistent spin helix
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Heattronics? Thermomagnotronics? Nanospinheat ? Calefactronics? Fierytronics? Coolspintronics? Thermospintronics? ? What I learned in kinder garden: Fire.
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
Research fueled by: Instituto de Ciencia de Materiales de Madrid-CSIC November 19 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR.
Spin-injection Hall effect Spin-injection Hall effect: A new member of the spintronic Hall family Institute of Physics of the Academy of Science of the.
Spin Injection Hall Effect: a new member of the spintronic Hall family and its implications in nano-spintronics Research fueled by: Optical Spintronics.
Spin-injection Hall Effect:
Research fueled by: University of Utah November 9 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Echoes of special relativity in.
Spin-dependent Hall effects and other thoughts on recent progress and future challenges in spintronics Progress in Spintronics and Graphene Research June.
JAIRO SINOVA Research fueled by: NERC ICNM 2007, Istanbul, Turkey July 25 th 2007 Anomalous and Spin-Hall effects in mesoscopic systems.
Research fueled by: Freie Universitaet Berlin April 12 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR New paradigms in spin-charge.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime Workshop on Spintronics and Low Dimensional Magnetism June.
Research fueled by: Universität zu Köln November 12 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Echoes of special relativity in.
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
Spin Injection Hall Effect: a new member of the spintronic Hall family Symposium Spin Manipulation in Solid State Systems Würzburg, October 8th - 9th,
Research fueled by: MRS Spring Meeting San Francisco April 28th 2011 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Topological thermoelectrics.
Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Jörg Wunderlich, A. Irvine, et al Institute of Physics.
Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Jörg Wunderlich, A. Irvine, et al Institute of Physics.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
Spin-injection Hall effect Spin-injection Hall effect: A new member of the spintronic Hall family Computational Magnetism and Spintronics International.
Research fueled by: Spintronics Tutorial Session March 20 th, 2011 APS March Meeting JAIRO SINOVA Texas A&M University Institute of Physics ASCR Spin Hall.
Research fueled by: Ohio State University February 9 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Exploiting the echoes of special.
Research fueled by: Forschungszentrum Jülich November 11 th, 2009 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Joerg W.
New spintronic device concept using spin injection Hall effect: a new member of the spintronic Hall family JAIRO SINOVA Texas A&M University Institute.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Topological Aspects of the Spin Hall Effect Yong-Shi Wu Dept. of Physics, University of Utah Collaborators: Xiao-Liang Qi and Shou-Cheng Zhang (XXIII International.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Institute of Physics ASCR
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
SPINTRONICS Tomáš Jungwirth Fyzikální ústav AVČR University of Nottingham.
Berry Phase Effects on Electronic Properties
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Research fueled by: 8th International Workshop on Nanomagnetism & Superconductivity Coma-ruga July 2 nd, 2012 Expecting the unexpected in the spin Hall.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
German Physical Society Meeting TU Berlin March 26 th, 2012 Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR UCLA A. Kovalev.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Research fueled by: International Symposium High Performance Computing in Nano-Spintronics Hamburg, November 30 th, 2011 Transport theory and simulations.
Electric-field controlled semiconductor spintronic devices
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Introduction to Spintronics
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Topological Insulators Effects of spin on transport of electrons in solids.
Spin-orbit interaction in semiconductor quantum dots systems
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
German Physical Society Meeting March 26 th, 2012 Berlin, Germany Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR UCLA.
Spin-dependent transport phenomena in strongly spin-orbit coupled mesoscopic systems: spin Hall effect and Aharonov-Casher Hong Kong, August 17 th 2005.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Dirac’s inspiration in the search for topological insulators
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Qian Niu 牛谦 University of Texas at Austin 北京大学
EE 315/ECE 451 Nanoelectronics I
6NHMFL, Florida State University, Tallahassee, Florida 32310, USA
Presentation transcript:

Research fueled by: Frontiers in Materials: Spintronics Strasboug, France May 13 th, 2012 Expecting the unexpected in the spin Hall effect: from fundamental to practical JAIRO SINOVA Vivek Amin Texas A&M University Institute of Physics ASCR Hitachi Cambridge Joerg W ü nderlich, A. Irvine, et al Institute of Physics ASCR Tomas Jungwirth, Vít Novák, Karel Vyborny, et al

Expecting the unexpected in the spin Hall effect: from fundamental to practical! The spin Hall effects is a relativistic spin-orbit coupling phenomenon which can be used to electrically generate or detect spin currents in magnetic and non-magnetic systems. In spite of the short time since its discovery it has now become ubiquitous in the field of spintronics and its development has also sparked a renewed interest in the full understanding of all the relating effects, such as the anomalous Hall effect. Exploiting such effects fully requires a better understanding of the effects and their intricate connections. SHE has been used to create one of the first spin FETs, to measure spin-currents generated by magnetization dynamics, and even to generate spin-currents large enough to produce spin-torque effects! In this talk I attempt to give a short, brief, and possibly oversimplified overview of some of the critical developments of this vibrant subfield of spintronics, its present understanding, its present applications, and some of its future challenges.

3 Nanoelectronics, spintronics, and materials control by spin-orbit coupling I. Introduction: Basic AHE and SHE phenomenology Mechanism II. Spin Hall effect: the early days First proposals: from theory to experiment First observations of the extrinsic and intrinsic (optical) Inverse spin Hall effect Direct iSHE in metals Spin pumping and FMR SHE-FET Spin Hall injection and spin precession manipulation iSHE device with spin-accumulation modulation SHE as a spin current generator and detector Spin based FET: old and new paradigm in charge-spin transport Theory expectations and modeling Experimental results Conclusion Expecting the unexpected in the spin Hall effect: from fundamental to practical

4 Nanoelectronics, spintronics, and materials control by spin-orbit coupling The electron: the key character with dual personalitiesCHARGE Easy to manipulate: Coulomb interaction SPIN 1/2 Makes the electron antisocial: a fermion quantum mechanics E=p 2 /2m E→ iħ d/dt p→ -iħ d/dr “Classical” external manipulation of charge & spin special relativity E 2 /c 2 =p 2 +m 2 c 2 (E=mc 2 for p=0) + particles/antiparticles & spin Dirac equation =

5 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Using charge and spin in information technology HIGH tunablity of electronic transport properties the key to FET success in processing technology substrate semiconductor insulator SD gate Vg >0 Using charge to create a field effect transistor: work horse of information processing Using spin: Pauli exclusion principle and Coulomb repulsion →ferromagnetism work horse of information storage total wf antisymmetric = orbital wf antisymmetric × spin wf symmetric (aligned) Robust (can be as strong as bonding in solids) Robust (can be as strong as bonding in solids) Strong coupling to magnetic field Strong coupling to magnetic field (weak fields = anisotropy fields needed (weak fields = anisotropy fields needed only to reorient macroscopic moment) only to reorient macroscopic moment) e-e-e-e- What about the internal communication between charge & spin? (spintronics)

6 e-e-e-e- Nanoelectronics, spintronics, and materials control by spin-orbit coupling Internal communication between spin and charge: spin-orbit coupling interaction (one of the few echoes of relativistic physics in the solid state) This gives an effective interaction with the electron’s magnetic moment Classical explanation (in reality it arises from a second order expansion of Dirac equation around the non-relativistic limit) “Impurity” potential V(r) Produces an electric field ∇V∇V B eff p s In the rest frame of an electron the electric field generates an effective magnetic field Motion of an electron

7 e-e-e-e- Nanoelectronics, spintronics, and materials control by spin-orbit coupling (one of the few echoes of relativistic physics in the solid state) This gives an effective interaction with the electron’s magnetic moment Classical explanation (in reality it arises from a second order expansion of Dirac equation around the non-relativistic limit) “Impurity” potential V(r) Produces an electric field ∇V∇V B eff p s In the rest frame of an electron the electric field generates an effective magnetic field Motion of an electron Consequence #1 Internal communication between spin and charge:spin- orbit coupling interaction

8 e-e-e-e- Nanoelectronics, spintronics, and materials control by spin-orbit coupling (one of the few echoes of relativistic physics in the solid state) This gives an effective interaction with the electron’s magnetic moment Classical explanation (in reality it arises from a second order expansion of Dirac equation around the non-relativistic limit) “Impurity” potential V(r) Produces an electric field ∇V∇V B eff p s In the rest frame of an electron the electric field generates an effective magnetic field Motion of an electron Consequence #2 Mott scattering Internal communication between spin and charge:spin- orbit coupling interaction

9 Nanoelectronics, spintronics, and materials control by spin-orbit coupling How spintronics has impacted your life: Metallic spintronics Appreciable sensitivity, simple design, cheap BUT only a 2-8 % effect Anisotropic magnetoresistance (AMR): In ferromagnets the current is sensitive to the relative direction of magnetization and current direction dawn of (metallic) spintronics e-e-e-e- current magnetization Fert, Grünberg et al Giant magnetoresistance (GMR) read head High sensitivity, very large effect % ↑↑ and ↑↓ are almost on and off states: “1” and “0” & magnetic → memory bit Nobel Price 2007 Fert and Grünberg e-e-e-e- ×

10 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Circuit heat generation is one key limiting factor for scaling device speed Industry has been successful in doubling of transistor numbers on a chip approximately every 18 months (Moore’s law). Although expected to continue for several decades several major challenges will need to be faced. What next? The need for basic research

11 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Information and communication technology power consumption HAS consequences Relative electricity consumption of ICT equipment

12 Nanoelectronics, spintronics, and materials control by spin-orbit coupling International Technology Roadmap for Semiconductors Basic Research Inc. 1D systems Single electron systems (FETs) Spin dependent physics Ferromagnetic transport Molecular systems New materials Strongly correlated systems Nanoelectronics The need for basic research in technology development

13 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Control of materials and transport properties via spin-orbit couplingAs Ga Mn New magnetic materials Nano-transport Spintronic Hall effects Magneto- transport Topological transport effects Effects of spin-orbit coupling in multiband systems Caloritronics

14 Caloritronics Nanoelectronics, spintronics, and materials control by spin-orbit coupling Effects of spin-orbit coupling in multiband systems As Ga Mn New magnetic materials Nano-transport Spintronic Hall effects Magneto- transport Topological transport effects Control of materials and transport properties via spin-orbit coupling Anomalous Hall effects I F SO majority minority V Nagaosa, Sinova, Onoda, MacDonald, Ong, RMP 10

15 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Simple electrical measurement of out of plane magnetization (or spin polarization ~ n ↑ -n ↓ ) InMnAs Spin dependent “force” deflects like-spin particles ρ H =R 0 B ┴ +4π R s M ┴ Anomalous Hall Effect: the basics I _ F SO _ _ _ majority minority V M⊥M⊥ AHE is does NOT originate from any internal magnetic field created by M ⊥ ; the field would have to be of the order of 100T!!!

16 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Cartoon of the mechanisms contributing to AHE independent of impurity density Electrons have an “anomalous” velocity perpendicular to the electric field related to their Berry’s phase curvature which is nonzero when they have spin-orbit coupling. Electrons deflect to the right or to the left as they are accelerated by an electric field ONLY because of the spin-orbit coupling in the periodic potential (electronics structure) E SO coupled quasiparticles Intrinsic deflection B Electrons deflect first to one side due to the field created by the impurity and deflect back when they leave the impurity since the field is opposite resulting in a side step. They however come out in a different band so this gives rise to an anomalous velocity through scattering rates times side jump. independent of impurity density Side jump scattering V imp (r) (Δso>ħ/τ)  ∝ λ* ∇ V imp (r) (Δso<ħ/τ) B Skew scattering Asymmetric scattering due to the spin-orbit coupling of the electron or the impurity. Known as Mott scattering. ~σ~1/n i V imp (r) (Δso>ħ/τ)  ∝ λ* ∇ V imp (r) (Δso<ħ/τ) A

17 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Valenzuela et al Nature 06 Inverse SHE Anomalous Hall effect: more than meets the eye Wunderlich, Kaestner, Sinova, Jungwirth PRL 04 Kato et al Science 03 Intrinsic Extrinsic V Mesoscopic Spin Hall Effect Intrinsic Brune,Roth, Hankiewicz, Sinova, Molenkamp, et al Nature Physics 2010 Wunderlich, Irvine, Sinova, Jungwirth, et al, Nature Physics 09 Spin-injection Hall Effect Anomalous Hall Effect I _ FSOFSO FSOFSO _ _ majority minority V Spin Hall Effect I _ FSOFSO FSOFSO _ _ V Topological Insulators Kane and Mele PRL 05

18 Nanoelectronics, spintronics, and materials control by spin-orbit coupling I. Introduction: using the dual personality of the electron Internal coupling of charge and spin: origin and present use Control of material and transport properties through spin-orbit coupling Anomalous Hall effect: from the metallic to the insulating regime Anomalous Hall effect basics, history, progress in the metallic regime Spin injection Hall effect: a new paradigm in exploiting SO coupling Spin based FET: old and new paradigm in charge-spin transport Theory expectations and modeling Experimental results Topological thermoelectrics:Thermoelectric figure of merit Increase of ZT in topological insulators. Conclusion New twists in spintronics: anomalous Hall effect, spin-helix transistors, and topological thermoelectrics New twists in spintronics: anomalous Hall effect, spin-helix transistors, and topological thermoelectrics

19 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Towards a realistic spin-based non-magnetic FET device [001] [100] [010] Can we achieve direct spin polarization injection, detection, and manipulation by electrical means in an all paramagnetic semiconductor system? Long standing paradigm: Datta-Das FET (1990) Exploiting the large Rashba spin-orbit coupling in InAs Electrons are confined in the z-direction in the first quantum state of the asymmetric trap and free to move in the x-y plane. gate k y [010] k x [100] Rashba effective magnetic field ⊗⊗⊗

20 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Can we achieve direct spin polarization injection, detection, and manipulation by electrical means in an all paramagnetic semiconductor system? Long standing paradigm: Datta-Das FET (1990) Exploiting the large Rashba spin-orbit coupling in InAs Towards a realistic spin-based non-magnetic FET device High resistance “0” Low resistance “1” BUT l MF << L S-D at room temperature

21 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Dephasing of the spin through the Dyakonov-Perel mechanism L SD ~ μm l MF ~ 10 nm

22 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Problem: Rashba SO coupling in the Datta-Das SFET is used for manipulation of spin (precession) BUT it dephases the spin too quickly (DP mechanism). New paradigm using SO coupling: SO not so bad for dephasing 1) Can we use SO coupling to manipulate spin AND increase spin-coherence? Can we detect the spin in a non-destructive way electrically?

23 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-dynamics in 2D electron gas with Rashba and Dresselhauss spin-orbit coupling a 2DEG is well described by the effective Hamiltonian:  > 0,  = 0 [110] _ k y [010] k x [100] Rashba: from the asymmetry of the confinement in the z-direction  = 0,  < 0 [110] _ k y [010] k x [100] Dresselhauss: from the broken inversion symmetry of the material, a bulk property 1) Can we use SO coupling to manipulate spin AND increase spin-coherence?

24 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Effects of Rashba and Dresselhaus SO coupling  = -  [110] _ k y [010] k x [100]  > 0,  = 0 [110] _ k y [010] k x [100]  = 0,  < 0 [110] _ k y [010] k x [100]

25 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-dynamics in 2D systems with Rashba and Dresselhauss SO coupling For the same distance traveled along [1-10], the spin precesses by exactly the same angle. [110] _ _

26 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Persistent state spin helix verified by pump-probe experiments Similar wafer parameters to ours

27 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-helix state when α ≠ β Wunderlich, Irvine, Sinova, Jungwirth, et al, Nature Physics 09 For Rashba or Dresselhaus by themselves NO oscillations are present; only and over damped solution exists; i.e. the spin-orbit coupling destroys the phase coherence. There must be TWO competing spin-orbit interactions for the spin to survive!!!

28 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Problem: Rashba SO coupling in the Datta-Das SFET is used for manipulation of spin (precession) BUT it dephases the spin too quickly (DP mechanism). New paradigm using SO coupling: SO not so bad for dephasing 1) Can we use SO coupling to manipulate spin AND increase spin-coherence? Can we detect the spin in a non-destructive way electrically? Use the persistent spin-Helix state and control of SO coupling strength (Bernevig et al 06, Weber et al 07, Wünderlich et al 09) ✓

29 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Type (i) contribution much smaller in the weak SO coupled regime where the SO- coupled bands are not resolved, dominant contribution from type (ii) Crepieux et al PRB 01 Nozier et al J. Phys. 79 Two types of contributions: i)S.O. from band structure interacting with the field (external and internal) Bloch electrons interacting with S.O. part of the disorder Lower bound estimate of skew scatt. contribution AHE contribution to Spin-injection Hall effect in a 2D gas Wunderlich, Irvine, Sinova, Jungwirth, et al, Nature Physics 09

30 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Local spin-polarization → calculation of AHE signal Weak SO coupling regime → extrinsic skew-scattering term is dominant Lower bound estimate Spin-injection Hall effect: theoretical expectations 1) Can we use SO coupling to manipulate spin AND increase spin-coherence? Can we detect the spin in a non-destructive way electrically? Use the persistent spin-Helix state and control of SO coupling strength Use AHE to measure injected current polarization electrically ✓ ✓

31 Nanoelectronics, spintronics, and materials control by spin-orbit coupling 2DHG 2DEG e h e e ee e h h h h h VsVs VdVd VHVH Spin-injection Hall effect device schematics For our 2DEG system: Hence α ≈ -β

32 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-injection Hall device measurements trans. signal σoσoσoσo σ+σ+σ+σ+ σ-σ-σ-σ- σoσoσoσo VLVL

33 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-injection Hall device measurements trans. signal σoσoσoσo σ+σ+σ+σ+ σ-σ-σ-σ- σoσoσoσo VLVL SIHE ↔ Anomalous Hall Local Hall voltage changes sign and magnitude along a channel of 6 μm

34 Nanoelectronics, spintronics, and materials control by spin-orbit coupling T = 250K Further experimental tests of the observed SIHE (preliminary)

35 Nanoelectronics, spintronics, and materials control by spin-orbit coupling V H2 I VbVb V H1 x V H2 VbVb V H1 x (a) (b) SiHE: new results Spin Hall effect transistor: Wunderlich, Irvine, Sinova, Jungwirth, et al, Science 2010 SiHE inverse SHE

36 Nanoelectronics, spintronics, and materials control by spin-orbit coupling VHVH VgVg I VbVb VHVH VgVg VbVb x Δ x=1  m ++ SiHE transistor Spin Hall effect transitor: Wunderlich, Irvine, Sinova, Jungwirth, et al, Science 2010

37 Nanoelectronics, spintronics, and materials control by spin-orbit coupling -- -- -- -- H1 H Vg2 [V] R H1 [ ] 0 12 R H2 [ ] SHE transistor AND gate

38 Nanoelectronics, spintronics, and materials control by spin-orbit coupling I. Introduction: using the dual personality of the electron Internal coupling of charge and spin: origin and present use Control of material and transport properties through spin-orbit coupling Anomalous Hall effect: from the metallic to the insulating regime Anomalous Hall effect basics, history, progress in the metallic regime Spin injection Hall effect: a new paradigm in exploiting SO coupling Spin based FET: old and new paradigm in charge-spin transport Theory expectations and modeling Experimental results Topological thermoelectrics:Thermoelectric figure of merit Increase of ZT in topological insulators. Conclusion New twists in spintronics: anomalous Hall effect, spin-helix transistors, and topological thermoelectrics New twists in spintronics: anomalous Hall effect, spin-helix transistors, and topological thermoelectrics

39 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Control of materials and transport properties via spin-orbit couplingAs Ga Mn New magnetic materials Nano-transport Spintronic Hall effects Magneto- transport Topological transport effects Effects of spin-orbit coupling in multiband systems Caloritronics Topological thermoelectrics

40 Nanoelectronics, spintronics, and materials control by spin-orbit coupling From AHE to topological insulators to thermoelectrics Vishwanath et al Nature Physics 09 Dislocations have 1D channels which also protected Topological Insulators: edge (2D) or surface states (3D) survive disorder effects when the bulk gap is produced by spin-orbit coupling Kane, Zhang, Molenkamp, Moore, et al Zhang, Physics 1, 6 (2008) X X QSHE in HgTe

41 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Thermoelectric generator

42 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Courtesy of Saskia Fischer

43 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Courtesy of Saskia Fischer

44 Nanoelectronics, spintronics, and materials control by spin-orbit coupling From AHE to topological insulators to thermoelectrics Best thermoelectrics Can we obtain high ZT through the topological protected states; are they related to the high ZT of these materials? Vishwanath et al 09 Dislocations have 1D channels which also protected ? ? Seebeck coefficient electrical conductivity electric thermal conductivity phonon thermal conductivity

45 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Bi 1−x Sb x (0.07 < x < 0.22) where the L’s are the linear Onsager dynamic coefficients Localized bulk states Possible large ZT through dislocation engineering Tretiakov, Abanov, Murakami, Sinova APL 2010

46 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Possible large ZT through dislocation engineering Remains very speculative but simple theory gives large ZT for reasonable parameters Tretiakov, Abanov, Murakami, Sinova APL 2010

47 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Beyond Bi 1−x Sb x (0.07 < x < 0.22) So far only one material is believed to have protected 1D states on dislocations: how to further exploit TI properties to increase ZT? Analogy to HolEy Silicon Tang et al Nano Letters 2010 Also phononic nanomesh structures (Yu, Mitrovic, et al Nature Nanotechnology 2010)

48 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Extending the idea to the entire class of TI insulators The surface of the holes provide the needed anisotropic transport Similar theory analysis as in 1D protected states but not as robust Curvature of the holes can be critical for TI to remain protected (Ostrovsky et al PRL 10, Zhang and Vishwanath PRL 10) d=60 nm R=15 nm Tretiakov, Abanov, Sinova APL 2011

49 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Control of materials and transport properties via spin-orbit couplingAs Ga Mn New magnetic materials Nano-transport Spintronic Hall effects Magneto- transport Topological transport effects Effects of spin-orbit coupling in multiband systems Caloritronics

50 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Xin Liu Texas A&M U. Sinova’s group Oleg Tretiakov (main PI Abanov) Texas A&M U. H. Gao Texas A&M U. Vivek Amin Texas A&M U. Erin Vehstedt Texas A&M U. Jacob Gyles Texas A&M U. Jan Jacob U. Hamburg Tomas Jungwirth Texas A&M U. Inst. of Phys. ASCR U. of Nottingham Joerg Wunderlich Cambridge-Hitachi Principal Outside Collaborators