Tangents to Circles Geometry. Objectives/Assignment Identify segments and lines related to circles. Use properties of a tangent to a circle. Assignment:

Slides:



Advertisements
Similar presentations
Geometry Mr. Davenport Spring 2010
Advertisements

Secants and Tangents Lesson 10.4 A B T. A B A secant is a line that intersects a circle at exactly two points. (Every secant contains a chord of the circle.)
Lesson 6.1 Tangents to Circles
Section 11-1 Tangent Lines SPI 32B: Identify chords of circles given a diagram SPI 33A: Solve problems involving the properties of arcs, tangents, chords.
Lesson 6.1 Properties of Tangents Page 182. Q1 Select A A.) This is the correct answer. B.) This is the wrong answer. C.) This is just as wrong as B.
Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
10.5 Tangents & Secants.
Arcs Tangents Angles Sphere Circumference What is Unit 3 about?
Tangents Chapter 10 Section 5. Recall What is a Circle –set of all points in a plane that are equidistant from a given point called a center of the circle.
Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
10.1 Use Properties of Tangents.  Circle - the set of all points in a plane that are equidistant from a given point.  Center - point in the middle of.
Tangents to Circles Pg 595. Circle the set of all points equidistant from a given point ▫Center Congruent Circles ▫have the same radius “Circle P” or.
10.1 Tangents to Circles Geometry.
Tangency. Lines of Circles EXAMPLE 1 Identify special segments and lines Tell whether the line, ray, or segment is best described as a radius, chord,
Section 12.1: Lines That intersect Circles
Chapter 12.1 Common Core – G.C.2 Identify and describe relationships among inscribed angels, radii, and chords…the radius of a circle is perpendicular.
Section 10 – 1 Use Properties of Tangents. Vocabulary Circle – A set of all points that are equidistant from a given point called the center of the circle.
CIRCLES Chapter 10.
Circles Chapter 10.
Circles.
Geometry June 8, 2015Geometry 10.1 Tangents to Circles2 Goals  Know properties of circles.  Identify special lines in a circle.  Solve problems with.
6.1 Use Properties of Tangents
Friday, January 22 Essential Questions
9.5 Tangents to Circles Geometry.
Tangents to Circles (with Circle Review)
10.1 Tangents to Circles Circle: the set of all points in a plane that are equidistant from a given point. Center: the point from which all points of.
CIRCLES Unit 9; Chapter 10. Tangents to Circles lesson 10.1 California State Standards 7: Prove and Use theorems involving properties of circles. 21:
Bell work What is a circle?. Bell work Answer A circle is a set of all points in a plane that are equidistant from a given point, called the center of.
9.1 Introduction to Circles. Some definitions you need Circle – set of all points in a plane that are equidistant from a given point called a center of.
Bell work What is a circle?. Bell work Answer A circle is a set of all points in a plane that are equidistant from a given point, called the center of.
Section 10-1 Tangents to Circles. Circle The set of all points in a plane that are equidistant from a given point (center). Center Circles are named by.
Chapter 10.1 Notes: Use Properties of Tangents Goal: You will use properties of a tangent to a circle.
Properties of Tangents. EXAMPLE 1 Identify special segments and lines Tell whether the line, ray, or segment is best described as a radius, chord, diameter,
Chapter 10.
EXAMPLE 1 Identify special segments and lines Tell whether the line, ray, or segment is best described as a radius, chord, diameter, secant, or tangent.
Circle GEOMETRY Radius (or Radii for plural) The segment joining the center of a circle to a point on the circle. Example: OA.
Chapter 12 Circles Vocab. Circle – the set of all points in a plane a given distance away from a center point. A A circle is named by its center point.
9.1 Introduction to Circles. Some definitions you need Circle – set of all points in a plane that are equidistant from a given point called a center of.
GEOMETRY HELP BA is tangent to C at point A. Find the value of x x = 180 Substitute x = 180Simplify. x = 68 Solve. m A + m B + m C =
10.1 Tangents to Circles Geometry CHS. Some definitions you need Circle – set of all points in a plane that are equidistant from a given point called.
10.1 Tangents to Circles.
Lesson 8-1: Circle Terminology
10.1 Use Properties of Tangents
Chapter 14: CIRCLES!!! Proof Geometry.
Exploring Circles. Definitions Notation: if the center is P then the circle can be denoted by סּP The points inside the circle form the circle's interior.
10.1 TANGENTS TO CIRCLES GEOMETRY. OBJECTIVES/ASSIGNMENT Identify segments and lines related to circles. Use properties of a tangent to a circle. Assignment:
10.1 Circles and Circumference. Objectives Identify and use parts of circles Identify and use parts of circles Solve problems using the circumference.
Circle – the set of all points in a plane a given distance away from a center point. A A circle is named by its center point. For example: Circle A.
C HAPTER Circles and Circumference 10.2 Angles and Arcs 10.3 Arcs and Chords 10.4 Inscribed Angles 10.5 Tangents 10.6 Secants, Tangents, and Angle.
10.1 Tangents to Circles. Some definitions you need Circle – set of all points in a plane that are equidistant from a given point called a center of the.
11-1 Parts of a Circle. Goal Identify segments and lines related to circles.
12.1 Parts of Circles and Tangent Lines Geometry.
1. What measure is needed to find the circumference
Sect Tangents to Circles
Properties of Tangents
Use Properties of Tangents
10.1 Tangents to Circles Geometry Ms. Reser.
9.5 Tangents to Circles Geometry. 9.5 Tangents to Circles Geometry.
CIRCLES Chapter 10.
Geometry Mrs. Padilla Spring 2012
10.1 Tangents to Circles.
EXAMPLE 1 Identify special segments and lines
Warm-Up Given circle O has a radius of 12 in., and PR is a diameter:
Objectives/Assignment
Chapter 10 Section 10.1.
Geometry Section 10.1.
EXAMPLE 1 Identify special segments and lines
NOTES 10.4 Secants and Tangents
Geometry Mrs. Spitz Spring 2005
Chapter 10 Circles.
Presentation transcript:

Tangents to Circles Geometry

Objectives/Assignment Identify segments and lines related to circles. Use properties of a tangent to a circle. Assignment: –Chapter 10 Definitions –Chapter 10 Postulates/Theorems –pp #5-48 all

Some definitions you need Circle – set of all points in a plane that are equidistant from a given point called a center of the circle. A circle with center P is called “circle P”, or P. The distance from the center to a point on the circle is called the radius of the circle. Two circles are congruent if they have the same radius.

Some definitions you need The distance across the circle, through its center is the diameter of the circle. The diameter is twice the radius. The terms radius and diameter describe segments as well as measures.

Some definitions you need A radius is a segment whose endpoints are the center of the circle and a point on the circle. QP, QR, and QS are radii of Q. All radii of a circle are congruent.

Some definitions you need A chord is a segment whose endpoints are points on the circle. PS and PR are chords. A diameter is a chord that passes through the center of the circle. PR is a diameter.

Some definitions you need A secant is a line that intersects a circle in two points. Line k is a secant. A tangent is a line in the plane of a circle that intersects the circle in exactly one point. Line j is a tangent.

Ex. 1: Identifying Special Segments and Lines Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius of C. a.AD b.CD c.EG d.HB

Ex. 1: Identifying Special Segments and Lines Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius of C. a.AD – Diameter because it contains the center C. b.CD c.EG d.HB

Ex. 1: Identifying Special Segments and Lines Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius of C. a.AD – Diameter because it contains the center C. b.CD– radius because C is the center and D is a point on the circle.

Ex. 1: Identifying Special Segments and Lines Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius of C. c. EG – a tangent because it intersects the circle in one point.

Ex. 1: Identifying Special Segments and Lines Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius of C. c.EG – a tangent because it intersects the circle in one point. d.HB is a chord because its endpoints are on the circle.

More information you need-- In a plane, two circles can intersect in two points, one point, or no points. Coplanar circles that intersect in one point are called tangent circles. Coplanar circles that have a common center are called concentric. 2 points of intersection.

Tangent circles A line or segment that is tangent to two coplanar circles is called a common tangent. A common internal tangent intersects the segment that joins the centers of the two circles. A common external tangent does not intersect the segment that joins the center of the two circles. Internally tangent Externally tangent

Concentric circles Circles that have a common center are called concentric circles. Concentric circles No points of intersection

Ex. 2: Identifying common tangents Tell whether the common tangents are internal or external.

Ex. 2: Identifying common tangents Tell whether the common tangents are internal or external. The lines j and k intersect CD, so they are common internal tangents.

Ex. 2: Identifying common tangents Tell whether the common tangents are internal or external. The lines m and n do not intersect AB, so they are common external tangents. In a plane, the interior of a circle consists of the points that are inside the circle. The exterior of a circle consists of the points that are outside the circle.

Ex. 3: Circles in Coordinate Geometry Give the center and the radius of each circle. Describe the intersection of the two circles and describe all common tangents.

Ex. 3: Circles in Coordinate Geometry Center of circle A is (4, 4), and its radius is 4. The center of circle B is (5, 4) and its radius is 3. The two circles have one point of intersection (8, 4). The vertical line x = 8 is the only common tangent of the two circles.

Using properties of tangents The point at which a tangent line intersects the circle to which it is tangent is called the point of tangency. You will justify theorems in the exercises.

Theorem If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency. If l is tangent to Q at point P, then l ⊥ QP. l

Theorem (converse) In a plane, if a line is perpendicular to a radius of a circle at its endpoint on a circle, then the line is tangent to the circle. If l ⊥ QP at P, then l is tangent to Q. l

Ex. 4: Verifying a Tangent to a Circle You can use the Converse of the Pythagorean Theorem to tell whether EF is tangent to D. Because 11 2 _ 60 2 = 61 2, ∆DEF is a right triangle and DE is perpendicular to EF. So by Theorem 10.2; EF is tangent to D.

Ex. 5: Finding the radius of a circle You are standing at C, 8 feet away from a grain silo. The distance from you to a point of tangency is 16 feet. What is the radius of the silo? First draw it. Tangent BC is perpendicular to radius AB at B, so ∆ABC is a right triangle; so you can use the Pythagorean theorem to solve.

Solution: (r + 8) 2 = r Pythagorean Thm. Substitute values c 2 = a 2 + b 2 r r + 64 = r Square of binomial 16r + 64 = r = 192 r = 12 Subtract r 2 from each side. Subtract 64 from each side. Divide. The radius of the silo is 12 feet.

Note: From a point in the circle’s exterior, you can draw exactly two different tangents to the circle. The following theorem tells you that the segments joining the external point to the two points of tangency are congruent.

Theorem If two segments from the same exterior point are tangent to the circle, then they are congruent. IF SR and ST are tangent to P, then SR  ST.

Proof of Theorem 10.3 Given: SR is tangent to P at R. Given: ST is tangent to P at T. Prove: SR  ST

Proof Statements: SR and ST are tangent to P SR  RP, ST  TP RP = TP RP  TP PS  PS ∆PRS  ∆PTS SR  ST Reasons: Given Tangent and radius are . Definition of a circle Definition of congruence. Reflexive property HL Congruence Theorem CPCTC

Ex. 7: Using properties of tangents AB is tangent to C at B. AD is tangent to C at D. Find the value of x. x 2 + 2

Solution: x = x Two tangent segments from the same point are  Substitute values AB = AD 9 = x 2 Subtract 2 from each side. 3 = xFind the square root of 9. The value of x is 3 or -3.

p = XY + YZ + ZW + WX Definition of perimeter p = XR + RY + YS + SZ + ZT + TW + WU + UX Segment Addition Postulate = Substitute. = 64 Simplify. The perimeter is 64 ft. XU = XR = 11 ft YS = YR = 8 ft ZS = ZT = 6 ft WU = WT = 7 ft By Theorem 11-3, two segments tangent to a circle from a point outside the circle are congruent. C is inscribed in quadrilateral XYZW. Find the perimeter of XYZW.. Tangent Lines

Using Multiple Tangents When a circle is inscribed in a triangle, the triangle is circumscribed about the circle. What is the relationship between each side of the triangle and the circle? Each segment is tangent to the circle, meaning each line is perpendicular to the radius forming a right angle.

Because opposite sides of a rectangle have the same measure, DW = 3 cm and OD = 15 cm. Because OZ is a radius of O, OZ = 3 cm.. A belt fits tightly around two circular pulleys, as shown below. Find the distance between the centers of the pulleys. Round your answer to the nearest tenth. Draw OP. Then draw OD parallel to ZW to form rectangle ODWZ, as shown below. Real World and Tangent Lines

OD 2 + PD 2 = OP 2 Pythagorean Theorem = OP 2 Substitute. 241 = OP 2 Simplify. The distance between the centers of the pulleys is about 15.5 cm. OP Use a calculator to find the square root. Because the radius of P is 7 cm, PD = 7 – 3 = 4 cm.. Because ODP is the supplement of a right angle, ODP is also a right angle, and OPD is a right triangle. (continued)