Nitrogen fluorescence in air for observing extensive air showers

Slides:



Advertisements
Similar presentations
Giuseppe Dalba, La Fisica dei Raggi X, Dipartimento di Fisica, Università di Trento, a.a Transmission MATTER Scattering Compton Thomson Photoelectric.
Advertisements

J.N. Matthews, ICRR 2/2004 Fluorescence Efficiency Measured by FLASH at SLAC -Preliminary Results- J.N. Matthews for the FLASH Collaboration.
Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
The Composition of Ultra High Energy Cosmic Rays Through Hybrid Analysis at Telescope Array Elliott Barcikowski PhD Defense University of Utah, Department.
Laboratory Experiments for Studying the Emission of Nitrogen and Air Andreas Ulrich, Andrei Morozov Technische Universität München Fakultät für Physik.
New approach to simulate radiation damage to single-crystal diamonds with SILVACO TCAD Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer.
Application for Pierre Auger Observatory.
Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays (EAS-UAP) O. Martínez a, E. Moreno a, G. Pérez a, H. Salazar.
Bayesian modelling of a diagnostic helium beam ADAS workshop, Armagh Observatory, October 4th, 2010 Maciej Krychowiak M. Brix, D. Dodt, R. König, O. Schmitz,
Lecture 3 Kinetics of electronically excited states
ATLAS LHCf Detector 140m away from the interaction point LHCf: calibration of hadron interaction models for high energy cosmic-ray physics at the LHC energy.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
FLASH FLuorescence in Air from SHowers (SLAC E-165) Pisin Chen SLAC Report to DOE HEP Review SLAC, June 2-4, 2004.
PERFORMANCE OF THE DELPHI REFRACTOMETER IN MONITORING THE RICH RADIATORS A. Filippas 1, E. Fokitis 1, S. Maltezos 1, K. Patrinos 1, and M. Davenport 2.
The TA Energy Scale Douglas Bergman Rutgers University Aspen UHECR Workshop April 2007.
Fluorescence from Air in Showers (FLASH) J. Belz 1, Z. Cao 2, P. Chen 3*, C. Field 3, P. Huentemeyer 2, W-Y. P. Hwang 4, R. Iverson 3, C.C.H. Jui 2, T.
FLASH FLuorescence in Air from SHowers (SLAC E-165) Pisin Chen SLAC Report to DOE HEP Review SLAC, June 15, 2005.
First Analysis of the Auger APF Light Source Eli Visbal (Carnegie Mellon University) Advisor: Stefan Westerhoff.
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Bianca KeilhauerTokyo, February 26th, 2004 Summary and Issues of Workshop, Bad Liebenzell, Dec.
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
Technische Universität München Laboratory Experiments using Low Energy Electron Beams with some Emphasis on Water Vapor Quenching A. Ulrich, T. Heindl,
IPC Friedrich-Schiller-Universität Jena 1 6. Fluorescence Spectroscopy.
E-165 (FLASH) Experiment Status Report Johnny S.T. Ng SLAC EPAC Meeting, Nov. 15, 2003.
Absolute Measurement of Air Fluorescence Yield for Ultra-High Energy Cosmic Rays Paolo Privitera Carlos Hojvat Fermilab, June FD SD.
The Experimental Program of the “FLASH” Experiment.
Measurement of the UHECR energy spectrum from hybrid data of the Pierre Auger Observatory Presenter: Lorenzo Perrone Università del Salento and INFN Lecce.
Plasma diagnostics using spectroscopic techniques
K. Belov INR Moscow April 2005 Yulia Fedorova & Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration International Symposium on Ultra High.
1 Atmospheric variations as observed by the BUST Barometric effect M.Berkova, V.Yanke, L.Dorman, V.Petkov, M.Kostyuk, R.Novoseltseva, Yu.Novoseltsev, P.
Berechnung von Temperaturen aus Lidar-Daten Michael Gerding Leibniz-Institut für Atmosphärenphysik.
Effect of air fluorescence properties on the reconstructed energy of UHECR José Ramón Vázquez, María Monasor, Fernando Arqueros Universidad Complutense.
Alba Cappa Universita’ and INFN Torino Čerenkov Light Measurements for the EUSO Experiment Rencontres de Moriond – Very High Energy Phenomena in the Universe.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
1 5-9 October th ICATPP, Como, Italy S. Maltezos NITROGEN MOLECULAR SPECTRA OF AIR FLUORESCENCE EMULATOR USING A LN 2 COOLED CCD S. Maltezos, E.
Claudio Di Giulio University of Roma Tor Vergata, INFN of Roma Tor Vergata IDAPP 2D Meeting, Ferrara, May The origin and nature of cosmic rays above.
Status and first results of the KASCADE-Grande experiment
Properties of giant air showers and the problem of energy estimation of initial particles M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute.
Energy Spectrum C. O. Escobar Pierre Auger Director’s Review December /15/2011Fermilab Director's Review1.
VHEPU Mar-2005 P. N édélec - LAPP Air Fluorescence Light Yield Measurements Summary of the IWFM05 Workshop Thanks.
Status of AIRFLY fluorescence yield measurements Paolo Privitera Università di Roma Tor Vergata, INFN Prague, May 19, 2006.
XXXI International Cosmic Ray Conference, ICRC 2009 Lodz, Poland, July 7-15, 2009 Time structure of the Extensive Air Shower front with the ARGO-YBJ experiment.
Photomultipliers: Uniformity measurements L. Pereira 1, A. Morozov 1, M. M. Fraga 1, L. M. S. Margato 1, P. Assis 2, R. Conceição 2, F. A. F. Fraga 1 1.
Fluorescence Measurements at ANL and the Auger Experiment Motivation for Fluorescence Calibrations AIRFLY Fluorescence Experiment at ANL Auger Experiment.
1 João Espadanal, Patricia Gonçalves, Mário Pimenta Santiago de Compostela 3 rd IDPASC school Auger LIP Group 3D simulation Of Extensive Air.
Measurement of the UHECR energy spectrum from hybrid data of the Pierre Auger Observatory Presenter: Lorenzo Perrone Università del Salento and INFN Lecce.
Atmospheric Radio Soundings in Argentina - Effects of Air Density Variations - Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Bianca KeilhauerTokyo,
Geant4 Simulation of the Pierre Auger Fluorescence Detector
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
Nitrogen fluorescence yield in dependence on atmospheric conditions Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft B. Keilhauer 1, J. Blümer.
Preliminary Profile Reconstruction of EA Hybrid Showers Bruce Dawson & Luis Prado Jr thanks to Brian Fick & Paul Sommers and Stefano Argiro & Andrea de.
Workshop on AstroParticle Physics, WAPP 2009 Bose Institute, Darjeeling, December 2009 Extensive Air Showers and Astroparticle Physics Observations and.
I.2. Radio-detection of extensive air showers Part II Olivier Martineau-Huynh TREND workshop, April 19, 2013.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Bianca Keilhauer for the Pierre Auger Collaboration
Many mass spectra are observed in addition to those of nitrogen (28amu) and benzene (78amu) molecules between 1 and 80amu, when the discharge is not generated.
Forschungszentrum Karlsruhe Erice, 7th July th International School for Cosmic Rays Astrophysics Motivation Energy Reconstruction Air Fluorescence.
A Measurement of the Ultra-High Energy Cosmic Ray Spectrum with the HiRes FADC Detector (HiRes-2) Andreas Zech (for the HiRes Collaboration) Rutgers University.
Saturation Roi Levy. Motivation To show the deference between linear and non linear spectroscopy To understand how saturation spectroscopy is been applied.
A Method of Shower Reconstruction from the Fluorescence Detector M.Giller, G.Wieczorek and the Lodz Auger group GZK-40 Moscow Workshop, May 2006.
Andrea Chiavassa Universita` degli Studi di Torino
Pierre Auger Observatory Present and Future
30th International Cosmic Ray Conference
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Absolute energy calibration of
Atomic Emisson spectroscopy (AES)
Latest Results from the KASCADE-Grande experiment
The Aperture and Precision of the Auger Observatory
Studies and results at Pierre Auger Observatory
Presentation transcript:

Nitrogen fluorescence in air for observing extensive air showers B. Keilhauer 8th Air Fluorescence Workshop Karlsruhe, 12 – 14 September 2011 Delegation of the workshop: M. Bohacova M. Fraga B. Keilhauer J. Matthews N. Sakaki Y. Tameda Y. Tsunesada A. Ulrich http://www.kceta.kit.edu/8afw2011/

Interpretation of Cosmic Rays Eur. Phys. J. Plus (2012) 127: 87 V. Berezinsky, UHECR2012 B. Keilhauer AtmoHEAD 2013

Interpretation of Cosmic Rays - scaling of the absolute energy - direct data of the experiments re-scaled data J(E)E3 , eV2 m-2 s-1 sr-1 E , eV E , eV Prog. Part. Nucl. Phys. 63 (2009) 293 B. Keilhauer AtmoHEAD 2013

Interpretation of Cosmic Rays - determination of the composition - M. Unger, UHECR2012 Astroparticle Physics 39–40 (2012) 33–43 B. Keilhauer AtmoHEAD 2013

Emission of isotropic Fluorescence- and forward-beamed Cherenkov-light Detection Principles Transmission Air shower Emission of isotropic Fluorescence- and forward-beamed Cherenkov-light Transmission Shower axis B. Keilhauer AtmoHEAD 2013

Fluorescence Light Production A.N. Bunner, PhD thesis, Cornell, 1967 Fluorescence Light Production excitation of nitrogen in air because of energy deposit from EAS direct excitation of 1N via ionization collisions with low energy electrons with spin change for 2P down cascading from higher level of 2P spontaneous de-excitation → fluorescence light B. Keilhauer AtmoHEAD 2013

Fluorescence Light Production excitation of nitrogen in air because of energy deposit from EAS spontaneous de-excitation → fluorescence light atmosphere dependence because of quenching 800 hPa, 293 K NIM A597(2008)41 B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description a) absolute yield value of a reference transmission: fluorescence yield in photons emitted per MeV of energy deposited at given experimental conditions p0 and T0 B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum: ratio of individual transitions of the spectrum between about 280 and 430 nm to the strength of the transitions at 337.1 nm B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air: characteristic pressure of dry air at experimental conditions T0 B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching: p′H2O(λ, T0) - characteristic pressure of water vapor at experimental conditions T0 B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching e) temperature-dependent collisional cross sections: αλ- exponent of the power law describing the T-dependent collisional cross sections for each λ B. Keilhauer AtmoHEAD 2013

Formulas for a Fluorescence Description a) absolute yield value of a reference transmission b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching e) temperature-dependent collisional cross sections Non-radiative de-excitation of excited nitrogen molecules only 1 value for each band system B. Keilhauer AtmoHEAD 2013

Strategy Describing the spectrum and the dependences on atmospheric conditions: common altitude-dependent shape requires adequate knowledge of atmospheric profiles Finding the absolute scaling: direct shift of reconstructed primary E of air showers b) wavelengths-dependent spectrum c) pressure dependence in dry air d) humidity quenching e) temperature-dependent collisional cross sections B. Keilhauer AtmoHEAD 2013

Suggested Reference Fluorescence Description - spectral intensities - spectral intensities Iλ as measured by AIRFLY; 34 transitions between 296 and 428 nm The sum of the yield differs by -1.66% (Ulrich et al.), +2.08% (Nagano et al.), -1.70% (FLASH). B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

Suggested Reference Fluorescence Description - pressure dependence- p‘air : one value for each band system; weighted averages for 2P(0,x), (1,x), (2,x), (3,x), 1N (0,x), (1,x), GH (0,x) derived from AIRFLY measurements; for weak transitions, as 2P(4,x), further GH, estimates from their publicatation B. Keilhauer AtmoHEAD 2013

Suggested Reference Fluorescence Description - humidity dependence- p‘H2O : one value for each band system; weighted averages for 2P (0,x), (1,x), (2,x), 1N (0,x) derived from Sakaki et al. measurements using the photon yield and the lifetime technique for weak transitions of 2P(3,x) and 2P(4,x) use weighted average of p‘H2O of 2P (1,x) and (2,x) bands (4.8% of the total emission at p0, T0) for all others set to Zero (2.1% of the total emission at p0, T0) B. Keilhauer AtmoHEAD 2013

Systematic study from Sakaki et al. - humidity dependence- N. Sakaki, 8AFW 2011 B. Keilhauer AtmoHEAD 2013

Suggested Reference Fluorescence Description - temp.-dep. collisional cross sections - α-coefficient : one value for each band system; weighted average for 2P(0,x) and 1N(0,x) derived from AIRFLY measurements for weak transitions of 2P(3,x) and 2P(4,x) use weighted average of p‘H2O of 2P (1,x) and (2,x) bands (4.8% of the total emission at p0, T0) for all others set to Zero (2.1% of the total emission at p0, T0) B. Keilhauer AtmoHEAD 2013

Parameter Set for the Reference Fluorescence Description B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

„academic“ fluorescence yield - scaling according Nagano et al. (2004) - Y. Tsunesada et al. , proc. ICRC 2013

„academic“ fluorescence yield - variations of p‘H2O - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

„academic“ fluorescence yield - variations of 𝜶 - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

Application to air shower reconstruction - same absolute scaling, Auger reconstruction framework - Mean: -9.98 % 0.34 % Mean: 0.71 g cm-2 1.63 g cm-2 RMS: 1.76 % 1.22 % RMS: 1.25 g cm-2 3.56 g cm-2 B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

Systematics in air shower reconstruction - same absolute scaling, Auger reconstruction framework - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

Systematics in air shower reconstruction - same absolute scaling, Auger reconstruction framework - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

Systematics in air shower reconstruction - same absolute scaling, Auger reconstruction framework - B. Keilhauer et al. , proc. UHECR 2012 B. Keilhauer AtmoHEAD 2013

Application to air shower reconstruction - different absolute scaling - both „Nagano“- scaling TA „Kakimoto“- scaling Mean: 0.3 % Mean: 8.6 % Mean: -6.6 g cm-2 Mean: 0.7 g cm-2 B. Keilhauer AtmoHEAD 2013

Influence of atmospheric profiles monthly models GDAS Astropart. Phys. 35 (2012) 591 B. Keilhauer AtmoHEAD 2013

Conclusion a reference fluorescence description has been developed all known atmospheric effects are implemented application to air shower reconstructions are done for Auger and TA, but not used in the official experiments‘ reconstructions yet first details are published in the proc. of UHECR2012 more in the proc. of ICRC 2013