Carnegie Mellon 1 Machine-Level Programming I: Basics Slides based on from those of Bryant and O’Hallaron.

Slides:



Advertisements
Similar presentations
Machine Programming I: Basics
Advertisements

Machine-Level Programming I: Basics
University of Washington Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers,
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-243: Introduction to Computer Systems 4 th Lecture, Sep. 2, 2010 Instructors: Randy Bryant.
Instruction Set Architectures
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Tue. May 27, 2015 Instructors: Nathaniel.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS.
Machine-Level Programming I: Introduction Apr. 10, 2006 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Machine-Level Programming I: Introduction Sept. 10, 2007 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Sep. 11, 2012 Instructors: Dave O’Hallaron,
1 Machine-Level Programming I: Basics Computer Systems Organization Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 14, 2013 These slides are from website which accompanies the.
MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Jan 28, 2014 Instructors: Seth Copen.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics /18-213:
Lee CSCE 312 TAMU 1 Machine-Level Programming I: Basics Instructor: Dr. Hyunyoung Lee Based on slides provided by: Randy Bryant and Dave O’Hallaron.
Machine-Level Programming I: Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS 105 “Tour of.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics Sep. 15, 2015.
University of Washington Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics /18-213:
University of Washington Basics of Machine Programming The Hardware/Software Interface CSE351 Winter 2013.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics MCS-284: Computer.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics CENG331 - Computer.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
University of Washington x86 Programming I The Hardware/Software Interface CSE351 Winter 2013.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 21, 2013 These slides are from website which accompanies the.
x86 Data Access and Operations
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Today: Machine Programming I: Basics History of Intel.
Lecture 6 Machine Structure Topics Finish IEEE Floating Point multiplication, addition Lab 01 comments Assembly Language Intro February 1, 2016 CSCE 212.
Lecture 6 Machine Structure Topics Finish IEEE Floating Point multiplication, addition Lab 01 comments Assembly Language Intro February 1, 2016 CSCE 212.
1 Machine-Level Programming II: Basics Comp 21000: Introduction to Computer Organization & Systems Spring 2016 Instructor: John Barr * Modified slides.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Machine-Level Programming I: Basics CS140 – Computer.
Spring 2016Assembly Review Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
Spring 2016Machine Code & C Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
1 Binghamton University Machine-Level Programming I: Basics CS220: Computer Systems II.
Today: Machine Programming I: Basics
Machine-Level Programming I: Basics
Samira Khan University of Virginia Feb 2, 2017
Instruction Set Architecture
Machine-Level Programming I: Basics
Machine-Level Programming I:
Credits and Disclaimers
Assembly Programming II CSE 351 Spring 2017
IA32 Processors Evolutionary Design
Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5th Lecture, Jan. 28, 2016 Instructors: Seth Copen Goldstein & Franz.
Instructor: Phil Gibbons
x86 Programming I CSE 351 Autumn 2016
Machine-Level Programming 1 Introduction
Lecture 5 Machine Programming
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Assembly Programming II CSE 410 Winter 2017
x86-64 Programming I CSE 351 Autumn 2017
Authors: Randal E. Bryant and David R. O’Hallaron
Machine-Level Programming: Introduction
x86-64 Programming I CSE 351 Winter 2018
Machine-Level Programming III: Arithmetic Comp 21000: Introduction to Computer Organization & Systems March 2017 Systems book chapter 3* * Modified slides.
x86-64 Programming I CSE 351 Winter 2018
Machine-Level Programming II: Basics Comp 21000: Introduction to Computer Organization & Systems Instructor: John Barr * Modified slides from the book.
Machine-Level Programming I: Basics
Machine-Level Programming III: Arithmetic Comp 21000: Introduction to Computer Organization & Systems March 2017 Systems book chapter 3* * Modified slides.
Machine-Level Programming II: Basics Comp 21000: Introduction to Computer Organization & Systems Spring 2016 Instructor: John Barr * Modified slides.
Machine-Level Programming I: Basics Comp 21000: Introduction to Computer Organization & Systems Instructor: John Barr * Modified slides from the book.
Lecture 5 Machine Programming
Credits and Disclaimers
Instructor: Brian Railing
x86-64 Programming I CSE 351 Spring 2019
CS201- Lecture 7 IA32 Data Access and Operations Part II
Presentation transcript:

Carnegie Mellon 1 Machine-Level Programming I: Basics Slides based on from those of Bryant and O’Hallaron

Carnegie Mellon 2 Machine Programming: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations

Carnegie Mellon 3 Intel x86 Evolution: Milestones NameDateTransistorsMHz K5-10  First 16-bit Intel processor. Basis for IBM PC & DOS  1MB address space K16-33  First 32 bit Intel processor, referred to as IA32  Added “flat addressing”, capable of running Unix Pentium 4E M  First 64-bit Intel x86 processor, referred to as x86-64 Core M  First multi-core Intel processor Core i M  Four cores (our shark machines)

Carnegie Mellon 4 Intel x86 Processors, cont. Machine Evolution  M  M  Pentium M  Pentium/MMX M  PentiumPro M  Pentium III M  Pentium M  Pentium 4E M  Core 2 Duo M  Core i M  Core i Billion Intel’s first multi-core processor Intel’s first 64-bit processor Intel’s first 32-bit processor

Carnegie Mellon State of the Art  Core i7 Broadwell 2015 Desktop Model  4 cores  Integrated graphics  GHz  65W Server Model  8 cores  Integrated I/O  GHz  45W

Carnegie Mellon 6 Machine Programming I: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations

Carnegie Mellon 7 ISA ISA (instruction set architecture) is a specification of the machine instructions implemented by a processor  The part of microprocessor design that one needs to understand or write assembly/machine code.  Includes: registers, native data types, addressing modes etc. Example ISAs:  Intel/AMD: IA32, x86-64  ARM: Used in almost all mobile phones

Carnegie Mellon 8 CPU Machine Code View (Programmer-Visible) CPU State  PC: Program counter  Store address of next instruction  Called “RIP” (x86-64)  Registers  Store frequently used program data  Condition codes  Store status of most recent arithmetic or logical operation  Used for conditional branching PC Registers Memory Code Data Stack Addresses Data Instructions Condition Codes  Memory  Byte addressable array  Code and user data

Carnegie Mellon 9 text binary Compiler ( gcc –Og –c p1.c p2.c ) Linker ( gcc or ld ) C program ( p1.c p2.c ) Object program ( p1.o p2.o ) Executable program ( p ) Turning C into Object Code  Compiler transforms statements, expressions, procedures into low-level instruction sequences

Carnegie Mellon 10 Compiling Into Assembly C Code (sum.c) long plus(long x, long y); void sumstore(long x, long y, long *dest) { long t = plus(x, y); *dest = t; } sum.s sumstore: pushq %rbx movq %rdx, %rbx call plus movq %rax, (%rbx) popq %rbx ret To generate sum.s : gcc –Og –S sum.c To generate sum.o: gcc –Og –c sum.c Assembly: the human readable form of machine code sum.s is the human readable version of sum.o

Carnegie Mellon 11 Machine-level programming: Data Types “Integer” data of 1, 2, 4, or 8 bytes  Data values  Memory Addresses Floating point data of 4, 8, or 10 bytes No aggregate types such as arrays or structures

Carnegie Mellon 12 Machine-level programming: Operations Perform arithmetic function on register or memory data Transfer data between memory and register  Load data from memory into register  Store register data into memory Transfer Control  Unconditional jumps  Conditional branches

Carnegie Mellon 13 Machine-level programming: An Example C Code Assembly  Move 8-byte value (quad-words) from register %rax to memory Object Code  3-byte instruction  Stored at address 0x40059e *dest = t; movq %rax, (%rbx) 0x40059e:

Carnegie Mellon 14 Code for sum.o 0x : 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0x48 0x89 0x03 0x5b 0xc3 Object Code Assembler  Translates.s into.o  Binary encoding of each instruction  Not executable due to missing linkages between code in different files Linker  Resolves references between files  Combines with libraries  E.g., code for malloc, printf Total of 14 bytes Each instruction 1, 3, or 5 bytes Starts at address 0x

Carnegie Mellon 15 Disassembled Disassembling Object Code Disassembler objdump –d sum.o  Produces approximate rendition of assembly code  Can be run on either a.out (complete executable) or.o file : : 53 push %rbx : d3 mov %rdx,%rbx : e8 f2 ff ff ff callq e: mov %rax,(%rbx) 4005a1: 5b pop %rbx 4005a2: c3 retq

Carnegie Mellon 16 Disassembled Dump of assembler code for function sumstore: 0x : push %rbx 0x : mov %rdx,%rbx 0x : callq 0x x e : mov %rax,(%rbx) 0x a1 :pop %rbx 0x a2 :retq Alternate Disassembly Within gdb Debugger gdb sum disassemble sumstore x/14xb sumstore  Examine the 14 bytes starting at sumstore Object 0x : 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0x48 0x89 0x03 0x5b 0xc3

Carnegie Mellon 17 What Can be Disassembled? Anything can be interpreted as executable code Disassembler starts at some byte and dissembles one instruction after another  Do not know when instructions stop and when data start Not an exact science, esp. when code is purposefully obfuscated

Carnegie Mellon 18 Machine Programming: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations

Carnegie Mellon 19 %rsp x86-64 Integer Registers  Can reference low-order 4 bytes (also low-order 1 & 2 bytes) %eax %ebx %ecx %edx %esi %edi %esp %ebp %r8d %r9d %r10d %r11d %r12d %r13d %r14d %r15d %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 %rax %rbx %rcx %rdx %rsi %rdi %rbp

Carnegie Mellon 20 movq Source, Dest Operand Types  Immediate: Constant integer data  Example: $0x400, $-533  Encoded with 1, 2, or 4 bytes  Register: One of 16 integer registers  Example: %rax, %r13  %rsp reserved for special use  Some others have special uses for particular instructions  Memory: 8 consecutive bytes of memory at address given by register  Various “address modes”  Simplest example: (%rax) Moving Data Prefixed with $

Carnegie Mellon 21 movq Operand Combinations Cannot do memory-memory transfer with a single instruction movq Imm Reg Mem Reg Mem Reg Mem Reg SourceDestC Analog movq $0x4,%raxtemp = 0x4; movq $-147,(%rax)*p = -147; movq %rax,%rdxtemp2 = temp1; movq %rax,(%rdx)*p = temp; movq (%rax),%rdxtemp = *p; Src,Dest

Carnegie Mellon 22 Simple Memory Addressing Modes Normal(R)Mem[Reg[R]]  Register R specifies memory address movq (%rcx),%rax DisplacementD(R)Mem[Reg[R]+D]  Register R specifies start of memory region  Constant displacement D specifies offset movq 8(%rbp),%rdx

Carnegie Mellon 23 Example of Simple Addressing void swap (long *xp, long *yp) { long t0 = *xp; long t1 = *yp; *xp = t1; *yp = t0; } swap: movq (%rdi), %rax movq (%rsi), %rdx movq %rdx, (%rdi) movq %rax, (%rsi) ret

Carnegie Mellon 24 Understanding Swap () %rdi %rsi %rax %rdx 0x120 0x100 Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address Value of first argument Value of second argument

Carnegie Mellon 25 Understanding Swap () %rdi %rsi %rax %rdx 0x120 0x Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address

Carnegie Mellon 26 Understanding Swap () %rdi %rsi %rax %rdx 0x120 0x Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address

Carnegie Mellon 27 Understanding Swap () 456 %rdi %rsi %rax %rdx 0x120 0x Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address

Carnegie Mellon 28 Understanding Swap () %rdi %rsi %rax %rdx 0x120 0x Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address

Carnegie Mellon 29 Complete Memory Addressing Modes General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+ D]  D: Constant “displacement”  Rb: Base register: Any of 16 integer registers  Ri:Index register: Any, except for %rsp  S: Scale: 1, 2, 4, or 8 (why these numbers?) Special Cases (Rb,Ri)Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri)Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon 30 ExpressionAddress ComputationAddress 0x8(%rdx) (%rdx,%rcx) (%rdx,%rcx,4) 0x80(,%rdx,2) Carnegie Mellon Address Computation Examples ExpressionAddress ComputationAddress 0x8(%rdx)0xf x80xf008 (%rdx,%rcx)0xf x1000xf100 (%rdx,%rcx,4)0xf *0x1000xf400 0x80(,%rdx,2)2*0xf x800x1e080 %rdx0xf000 %rcx0x0100

Carnegie Mellon 31 Machine Programming I: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations

Carnegie Mellon 32 Carnegie Mellon Address Computation Instruction leaq Src, Dst (load effective address)  Set Dst to address denoted by src address mode expression Uses  Computing addresses without a memory reference  E.g., translation of p = &x[i];  Computing arithmetic expressions of the form x + k*y  k = 1, 2, 4, or 8 Example long m3(long x) { return x*3; } long m3(long x) { return x*3; } leaq (%rdi,%rdi,2), %rax # t = x+x*2 Assembly (gcc –Og –S m3.c)

Carnegie Mellon 33 Carnegie Mellon Some Arithmetic Operations Two Operand Instructions: addq Src,Dest Dest = Dest + Src subq Src,Dest Dest = Dest  Src imulq Src,Dest Dest = Dest * Src salq Src,Dest Dest = Dest << Src Also called shlq sarq Src,Dest Dest = Dest >> Src Arithmetic shrq Src,Dest Dest = Dest >> Src Logical xorq Src,Dest Dest = Dest ^ Src andq Src,Dest Dest = Dest & Src orq Src,Dest Dest = Dest | Src No distinction between signed and unsigned int (why?)

Carnegie Mellon 34 Carnegie Mellon Some Arithmetic Operations One Operand Instructions incq DestDest = Dest + 1 decq DestDest = Dest  1 negq DestDest =  Dest notq DestDest = ~Dest

Carnegie Mellon 35 Carnegie Mellon Arithmetic Expression Example long arith (long x, long y, long z) { long t1 = x+y; long t2 = z+t1; long t3 = x+4; long t4 = y * 48; long t5 = t3 + t4; long rval = t2 * t5; return rval; } long arith (long x, long y, long z) { long t1 = x+y; long t2 = z+t1; long t3 = x+4; long t4 = y * 48; long t5 = t3 + t4; long rval = t2 * t5; return rval; } leaq (%rdi,%rsi), %rax addq %rdx, %rax leaq (%rsi,%rsi,2), %rdx salq $4, %rdx leaq 4(%rdi,%rdx), %rcx imulq %rcx, %rax ret rax = t1 rax = t2 rdx = 3*y rdx = 48 *y = t4 rcx = x+4+t4 = t5 rax = t2*t5 RegisterUse(s) %rdi Argument x %rsi Argument y %rdx Argument z %raxReturn val

Carnegie Mellon 36 Machine Programming I: Summary History of Intel processors and architectures  Evolutionary design leads to many quirks and artifacts C, assembly, machine code  Low-level machine abstraction: program counter, registers, machine operations...  Compiler must transform C statements into low-level machine abstraction Assembly Basics: Registers, operands, move, arithmetic  C compiler will figure out different instruction combinations to carry out computation