Wednesday, Oct. 17, 2012PHYS 3313-001, Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.

Slides:



Advertisements
Similar presentations
The Quantum Mechanics of Simple Systems
Advertisements

Quantum One: Lecture 4. Schrödinger's Wave Mechanics for a Free Quantum Particle.
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
2. Solving Schrödinger’s Equation Superposition Given a few solutions of Schrödinger’s equation, we can make more of them Let  1 and  2 be two solutions.
CHAPTER 6 Quantum Mechanics II
Modern Physics lecture 3. Louis de Broglie
Ch 9 pages ; Lecture 21 – Schrodinger’s equation.
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
CHAPTER 6 Quantum Mechanics II
6.1The Schrödinger Wave Equation 6.2Expectation Values 6.3Infinite Square-Well Potential 6.4Finite Square-Well Potential 6.5Three-Dimensional Infinite-Potential.
ENE 311 Lecture 2. Diffusion Process The drift current is the transport of carriers when an electric field is applied. There is another important carrier.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Lecture 2. Postulates in Quantum Mechanics Engel, Ch. 2-3 Ratner & Schatz, Ch. 2 Molecular Quantum Mechanics, Atkins & Friedman (4 th ed. 2005), Ch. 1.
Ch 9 pages Lecture 22 – Harmonic oscillator.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
MODULE 1 In classical mechanics we define a STATE as “The specification of the position and velocity of all the particles present, at some time, and the.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
Physics 2170 – Spring Hydrogen atom Next weeks homework should be available by 5pm today and is due next.

Ch 4. Using Quantum Mechanics on Simple Systems
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Physics 451 Quantum mechanics I Fall 2012 Sep 12, 2012 Karine Chesnel.
Monday, Oct. 7, 2013PHYS , Fall 2013 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 7, 2013 Dr. Amir Farbin Wave Motion & Properties.
1 PHYS 3313 – Section 001 Lecture #18 Monday, Mar. 31, 2014 Dr. Jaehoon Yu Valid Wave Functions Energy and Position Operators Infinite Square Well Potential.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Research quantum mechanical methods of bioobjects.
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #18
Wednesday, Oct. 31, 2012PHYS , Fall 2012 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Oct. 31, 2012 Dr. Amir Farbin Reflection.
Physics Lecture 11 3/2/ Andrew Brandt Monday March 2, 2009 Dr. Andrew Brandt 1.Quantum Mechanics 2.Schrodinger’s Equation 3.Wave Function.
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
LECTURE 17 THE PARTICLE IN A BOX PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Modern Physics lecture X. Louis de Broglie
CHAPTER 6 Quantum Mechanics II
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.
Review for Exam 2 The Schrodinger Eqn.
The Quantum Theory of Atoms and Molecules
PHYS 3313 – Section 001 Lecture #17
Solutions of Schrodinger Equation
UNIT 1 Quantum Mechanics.
Quantum Mechanics.
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #18
CHAPTER 6 Quantum Mechanics II
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
Schrodinger Equation The equation describing the evolution of Ψ(x,t) is the Schrodinger equation Given suitable initial conditions (Ψ(x,0)) Schrodinger’s.
Elements of Quantum Mechanics
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #20
The Stale of a System Is Completely Specified by lts Wave Function
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #19
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties of valid wave functions Time independent Schrodinger Equation Expectation Values Operators – Position, Momentum and Energy Infinite Potential Well Finite Potential Well

Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 2 Announcements Reading assignments –CH6.1 – the special topic Colloquium this week –4pm, today, Oct. 17, SH101 –Drs. Musielak and Fry of UTA Please mark your calendar for the Weinberg lecture at 7:30pm, coming Wednesday, Oct. 24!! –Let all of your family and friends know of this.

Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Special project #4 Show that the wave function  =A[sin(kx-  t)+icos(kx-  t)] is a good solution for the time- dependent Schrödinger wave equation. Do NOT use the exponential expression of the wave function. (10 points) Determine whether or not the wave function  =Ae -  |x| satisfies the time-dependent Schrödinger wave equation. (10 points) Due for this special project is Monday, Oct. 22. You MUST have your own answers! Monday, Oct. 15, PHYS , Fall 2012 Dr. Jaehoon Yu

Special project #5 Show that the Schrodinger equation becomes Newton’s second law. (15 points) Deadline Monday, Oct. 29, 2012 You MUST have your own answers! Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Properties of Valid Wave Functions Boundary conditions 1) To avoid infinite probabilities, the wave function must be finite everywhere. 2) To avoid multiple values of the probability, the wave function must be single valued. 3) For finite potentials, the wave function and its derivative must be continuous. This is required because the second-order derivative term in the wave equation must be single valued. (There are exceptions to this rule when V is infinite.) 4) In order to normalize the wave functions, they must approach zero as x approaches infinity. Solutions that do not satisfy these properties do not generally correspond to physically realizable circumstances. Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Time-Independent Schrödinger Wave Equation The potential in many cases will not depend explicitly on time. The dependence on time and position can then be separated in the Schrödinger wave equation. Let, which yields: Now divide by the wave function: The left side of this last equation depends only on time, and the right side depends only on spatial coordinates. Hence each side must be equal to a constant. The time dependent side is Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

We integrate both sides and find: where C is an integration constant that we may choose to be 0. Therefore This determines f to be by comparing it to the wave function of a free particle This is known as the time-independent Schrödinger wave equation, and it is a fundamental equation in quantum mechanics. Time-Independent Schrödinger Wave Equation(con’t) Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Stationary State Recalling the separation of variables: and with f(t) = the wave function can be written as: The probability density becomes: The probability distributions are constant in time. This is a standing wave phenomena that is called the stationary state. Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Comparison of Classical and Quantum Mechanics Newton’s second law and Schrödinger’s wave equation are both differential equations. Newton’s second law can be derived from the Schrödinger wave equation, so the latter is the more fundamental. Classical mechanics only appears to be more precise because it deals with macroscopic phenomena. The underlying uncertainties in macroscopic measurements are just too small to be significant due to the small size of the Planck’s constant Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 10

Expectation Values In quantum mechanics, measurements can only be expressed in terms of average behaviors since precision measurement of each event is impossible The expectation value is the expected result of the average of many measurements of a given quantity. The expectation value of x is denoted by. Any measurable quantity for which we can calculate the expectation value is called a physical observable. The expectation values of physical observables (for example, position, linear momentum, angular momentum, and energy) must be real, because the experimental results of measurements are real. The average value of x is Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Continuous Expectation Values We can change from discrete to continuous variables by using the probability P ( x, t ) of observing the particle at a particular x. Using the wave function, the expectation value is: The expectation value of any function g ( x ) for a normalized wave function: Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Momentum Operator To find the expectation value of p, we first need to represent p in terms of x and t. Consider the derivative of the wave function of a free particle with respect to x : With k = p / ħ we have This yields This suggests we define the momentum operator as. The expectation value of the momentum is Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Position and Energy Operators The position x is its own operator as seen above. The time derivative of the free-particle wave function is Substituting  = E / ħ yields The energy operator is The expectation value of the energy is Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 14

Infinite Square-Well Potential The simplest such system is that of a particle trapped in a box with infinitely hard walls that the particle cannot penetrate. This potential is called an infinite square well and is given by The wave function must be zero where the potential is infinite. Where the potential is zero inside the box, the Schrödinger wave equation becomes where. The general solution is. Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu

Quantization Since the wave function must be continuous, the boundary conditions of the potential dictate that the wave function must be zero at x = 0 and x = L. This yields valid solutions for B=0 and for integer values of n such that kL = n   k=n  /L The wave function is now We normalize the wave function The normalized wave function becomes These functions are identical to those obtained for a vibrating string with fixed ends. Wednesday, Oct. 17, PHYS , Fall 2012 Dr. Jaehoon Yu