1QQ # 7: Answer one. 1.For A-D list the four types of Glial Cells of the CNS and their functions: A) B) C) D). E) Which type of neuron has its cell body.

Slides:



Advertisements
Similar presentations
Outline Neuronal excitability Nature of neuronal electrical signals Convey information over distances Convey information to other cells via synapses Signals.
Advertisements

Outline Neuronal excitability Nature of neuronal electrical signals Convey information over distances Convey information to other cells via synapses Signals.
Membrane at Rest Selectively Permeable Channels Ion Concentration Differences Nernst Relationship Ion Pumps.
Neuroscience: Exploring the Brain, 3e
Neural Signaling: The Membrane Potential Lesson 8.
Membrane Potential 101 R. Low- 08/26/14 DRAFT
Monday April 9, Nervous system and biological electricity II 1. Pre-lecture quiz 2. A review of resting potential and Nernst equation 3. Goldman.
Neurones Dendrites Axon Facilitated diffusion Schwann cells Active transport Myelin Na + /K + pump Synapse.
RESTING MEMBRANE POTENTIAL
Announcements. Today Review membrane potential What establishes the ion distributions? What confers selective permeability? Ionic basis of membrane potential.
Resting Membrane Potential. Cell Membranes F5-1 Cell membrane distinguishes one cell from the next. Cell membranes do the following: a) Regulates exchange.
PHYSIOLOGY 1 Lecture 11 Membrane Potentials. n Objectives: Student should know –1. The basic principals of electricity –2. Membrane channels –3. Electrical-chemical.
1QQ#11 for 10:30 1.Retrograde axonal transport limits the rate of axonal regeneration to 1-2 mm/day. 2.The cell body of an afferent neuron is located in.
Bioelectricity Provides basis for “irritability” or “excitability Fundamental property of all living cells Related to minute differences in the electrical.
Bioelectromagnetism Exercise #1 – Answers TAMPERE UNIVERSITY OF TECHNOLOGY Institute of Bioelectromagnetism.
Resting potentials, equilibrium potential, and action potentials Mr. Strapps says “I put the “rest” in resting potential.”
Chapter 3 The Neuronal Membrane at Rest.
Resting membrane potential 1 mV= V membrane separates intra- and extracellular compartments inside negative (-80 to -60 mV) due to the asymmetrical.
General Organization - CNS and PNS - PNS subgroups The basic units- the cells - Neurons - Glial cells Neurophysiology - Resting, graded and action potentials.
Ion Pumps and Ion Channels CHAPTER 48 SECTION 2. Overview  All cells have membrane potential across their plasma membrane  Membrane potential is the.
Neural Signaling: The Membrane Potential Lesson 9.
RESTING MEMBRANE POTENTIAL
ECF and ICF show no electrical potential (0 mV).
THE NERVE IMPULSE. Cells and membrane potentials All animal cells generate a small voltage across their membranes This is because there is a large amount.
Learning Objectives Organization of the Nervous System Electrical Signaling Chemical Signaling Networks of Neurons that Convey Sensation Networks for Emotions.
Membrane Potentials All cell membranes are electrically polarized –Unequal distribution of charges –Membrane potential (mV) = difference in charge across.
Agenda Membrane potentials – what they are Formation of membrane potentials Types and uses of membrane potentials The significance of membrane potentials.
BME 6938 Mathematical Principles in Neuroscience Instructor: Dr Sachin S. Talahthi.
Announcements:. Last lecture 1.Organization of the nervous system 2.Introduction to the neuron Today – electrical potential 1.Generating membrane potential.
NERVOUS TISSUE Chapter 44. What Cells Are Unique to the Nervous System? Nervous systems have two categories of cells: Neurons generate and propagate electrical.
Membrane Potential 6 / 5 /10. The cell membranes of all body cells in the resting condition are, polarized which means that they show an electrical potential.
Transmission 1. innervation - cell body as integrator 2. action potentials (impulses) - axon hillock 3. myelin sheath.
DIFFUSION POTENTIAL, RESTING MEMBRANE POTENTIAL, AND ACTION POTENTIAL
Resting Membrane Potential (Voltage) Dr.Mohammed Alotaibi MRes, PhD (Liverpool, England) Department of Physiology College of Medicine King Saud University.
—K + is high inside cells, Na + is high outside because of the Na+/K+ ATPase (the sodium pump). —Energy is stored in the electrochemical gradient: the.
26 September 2011 Lab this week: Four Endocrine Cases –Bring textbook –Optional: Bring laptop with AirTerrier Test # 1 =Monday, Oct 3 rd. –Test Material.
Chapter Goals (Membrane Potentials) After studying this chapter, students should be able to 1. explain what is meant by active transport and describe how.
How Neurons Generate Signals The Neuron at Rest. Stepping on a Thumbtack  Reflexive withdrawal of the foot – a simple behavior controlled by a circuit.
Action Potentials.
Unit 1 Opener neuro4e-unit-01-opener.jpg.
Resting Membrane Potential (Voltage) Dr.Mohammed Alotaibi MRes, PhD (Liverpool, England) Department of Physiology College of Medicine King Saud University.
Equilibrium Potential E x (where x is an ion) Membrane potential with an electrical driving force equal but opposite to the driving force of the concentration.
29 September Today –Neurons –Axonal transport –Resting Membrane potential Next class –Action potentials –Conduction of action potentials Lab next week:
28 Sept Announcements Pick up answer sheet for Quiz 2 from front Friday absentees: pick up Quiz 1 & Andro Paper from Piano Read & bring Androstenedione.
Electrophysiology 1.
Bioelectrical phenomena in nervous cells. Measurement of the membrane potential of the nerve fiber using a microelectrode membrane potential membrane.
Learning Objectives Students should be able to: Define resting membrane potential and how it is generated. Relate Nernst Equilibrium potential for sodium,
1 October 2010 Test # 1 Monday See Test 1 Study topics on website See supplemental powerpoint on EPI and NE posted to powerpoint folder. Today in class.
Announcements Pick up & keep Quiz 1 from piano Pick up copy of Androstenedione paper for Lab next week Monday Quiz on Endocrine Chapter and Case Studies.
THE NERVE IMPULSE. Cells and membrane potentials All animal cells generate a small voltage across their membranes This is because there is a large amount.
The Action Potential. Four Signals Within the Neuron  Input signal – occurs at sensor or at points where dendrites are touched by other neurons.  Integration.
LECTURE TARGETS Concept of membrane potential. Resting membrane potential. Contribution of sodium potassium pump in the development of membrane potential.
Chapter 44 Lecture 15 Neurons and Nervous System Dr. Alan McElligott.
Do Now 1/9/15 1.Name 3 glial cells and describe their function and location. 2.Which neural pathway transmits a signal when the internal body temperature.
Definition of terms Potential : The voltage difference between two points. Membrane Potential :The voltage difference between inside and outside of the.
OBJECTIVES Describe the method for measurement of membrane potential
The membrane Potential
Lecture 1 –Membrane Potentials: Ion Movement - Forces and Measurement
Resting (membrane) Potential
Sci 2 Lect. 2 Membrane Potential ©Dr Bill Phillips 2002
The electrical properties of the plasma membrane (L3)
RESTING MEMBRANE POTENTIAL
Resting Membrane Potential (RMP)
RESTING MEMBRANE POTENTIAL ACTION POTENTIAL WEEK 4
Resting Membrane potential (Vm) or RMP
Transmission of nerve impulses
Announcements Pick up & keep Quiz 1 from piano
2 primary cell types in nervous system
Action potential and synaptic transmission
Changes in electrical gradients
Presentation transcript:

1QQ # 7: Answer one. 1.For A-D list the four types of Glial Cells of the CNS and their functions: A) B) C) D). E) Which type of neuron has its cell body in the PNS and an axon that enters the CNS? 2.These questions concern Menopause: A) Which hormones are found in excess in this condition? B) Which hormones are found deficient in this condition? C) If a woman elects to receive HRT, what hormone is being replaced? D) What are the risks associated with HRT? E) What are the risks of not replacing the hormone?

Fig S 12 Orthograde = anterograde retrograde

Axonal Transport Orthograde = Anterograde = from soma to terminals –slow……1-2 mm/day –fast … mm/day (kinesin) Retrograde = from terminals to soma –fast… mm/day (dynein) What gets transported and why? Axonal transport is too slow for rapid signaling, so… S 13

Who Cares?

Alayna Davis October 1992 Age 5 October 31, 1992 October 1998

Regeneration in CNS? So how can PNS axon regenerate and what prevents CNS axons from regenerating?

Bioelectricity is chemistry + physics Membrane potentials Ohm’s law Resting Membrane Potential The Nernst Equation The Goldman Equation

Who Cares?

Cortical vesicle exocytosis during fertilization leads to envelope elevationA, prior to fertilization (left), the proteinaceous vitelline coat of the sea urchin egg of Lytechinus pictus is not visible in this differential interference contrast image. Zimmerberg J et al. J Physiol 1999;520:15-21 ©1999 by The Physiological Society

Virtues of Squid Giant Axon Big questions: 1)How do cells generate a resting membrane potential? 2)What causes changes in the membrane potential? 3)How do cells use these potentials? i.e. What is their purpose?

Fig

Fig a There is a concentration gradient favoring the diffusion of Na+ and K+ through the selectively permeable membrane which has ion channels only for potassium. At the start, is there an electrical driving force?

Fig b With K+ channels open, K+ diffuses down its concentraiton gradient, leaving behind CL- ions which are not permeable through the membrane. As more and more K+ move to the left, the compartment they leave becomes more and more negatively charged. Is there an electrical driving force?

Fig c

Fig d Soon, the accumulation of negative charges seriously impeded the diffusion of K+ as the electrostatic force builds up in opposition to the concentration driving force.

Fig e Equilibrium potential = Nernst potential = diffusion potential Eventually, the electrostatic force that impedes diffusion of K+ is exactly equal to the driving force favoring diffusion based on a concentration gradient. When these two driving forces are equal and opposite, the membrane potential reaches an equilibrium at which the voltage is called So which compartment corresponds to intracellular fluid? E ion+ = 61/Z log ([conc outside]/ [conc inside]) E K+ = 61/1 log (5/150) E K+ = -90 mV

The Nernst Equation If the membrane is permeable to ONLY ONE ion species and you know the concentrations on both sides of the membrane, use the Nernst Equation to calculate the membrane potential. Nernst potential for X = 61/Z log [Outside ] / [Inside] S 2

Fig e Equilibrium potential = Nernst potential = diffusion potential E ion+ = 61/Z log ([conc outside]/ [conc inside]) E K+ = 61/1 log (5/150) E K+ = -90 mV 150 mM5 mM K+ 50 mM Predict the change in membrane potential if K+ were added to the extracellular fluid. S 1 What hormone regulates the levels of Na+ and K+ in extracellular fluid?

Fig a S 3 Now consider a situation in which only Na+ is permeable.

Fig b S 4

Fig c S 5

Fig d S 6

Fig e Equilibrium potential for Na+ E Na+ = 61/1 log (145/15) E Na + = +60 mV 145 mM 15 mM Extracellular Intracellular So, given these concentrations of Na+ and a membrane permeable only to Na+, use Nernst equation to calculate what the membrane potential would be. At the equilibrium potential, no net movement of Na+ because driving forces (concentration and electrical) are exactly equal and opposite. S 7

Electrical and concentration gradient driving forces for Sodium and Potassium How does the membrane potential change if 1) permeability to sodium increases 2) Permeability to potassium increases Why is resting membrane potential closer to E K than E Na ? What would happen to membrane potential if suddenly P Na became very great? Size and Direction of Arrows show driving forces! The G-H-K Equation! S 8