Broadcast and multicast routing. R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing.

Slides:



Advertisements
Similar presentations
11-1 Last time □ Distance vector link cost changes ♦ Count-to-infinity, poisoned reverse □ Hierarchical routing ♦ Autonomous Systems ♦ Inter-AS, Intra-AS.
Advertisements

Computer Networking A Top-Down Approach Chapter 4.7.
Introduction 1 Lecture 22 Network Layer (Broadcast and Multicast) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Multicasting 1. Multicast Applications News/sports/stock/weather updates Distance learning Configuration, routing updates, service location Pointcast-type.
Computer Networks Chapter 4: Advanced Internetworking
1  Changes in IPv6 – Expanded addressing capabilities (32 to 128 bits), anycast address – A streamlined 40-byte header – Flow labeling and priority –
Multicast on the Internet CSE April 2015.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
Multicast1 Instructor: Anirban Mahanti Office: ICT Slides are adapted from the companion web site of the textbook “
CPE 400 / 600 Computer Communication Networks
Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers.
1 Internet Networking Spring 2006 Tutorial 7 DVMRP.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public BSCI Module 7 Lesson 3 1 IP Multicasting: Multicast Routing Protocols.
Network Layer4-1 Spanning trees r Suppose you have a connected undirected graph m Connected: every node is reachable from every other node m Undirected:
Network Layer session 1 TELE3118: Network Technologies Week 8: Network Layer Multicast, Mobility Some slides have been taken from: r Computer Networking:
Slide Set 15: IP Multicast. In this set What is multicasting ? Issues related to IP Multicast Section 4.4.
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
11/4/ /6/2003 Routing in the Inet, IPv6, Mcast, Mobility November 4-6, 2003.
1 IP Multicasting. 2 IP Multicasting: Motivation Problem: Want to deliver a packet from a source to multiple receivers Applications: –Streaming of Continuous.
1 CSE 401N:Computer Network LECTURE-14 MULTICAST ROUTING.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
© J. Liebeherr, All rights reserved 1 IP Multicasting.
Multimedia Networking #6 IP Multicast Semester Ganjil 2012 PTIIK Universitas Brawijaya.
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking Multicast routing.
Multicast Routing Protocols NETE0514 Presented by Dr.Apichan Kanjanavapastit.
Network Layer4-1 R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing r Deliver.
Multicast Sources: Kurose and Ross cast/addresstranslation_01.html.
Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
1 IP Multicasting By Behzad Akbari These slides are based on the slides of J. Kurose (UMASS) and Shivkumar (RPI)
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
1 Chapter 16b Multicasting. Chapter 16b Multicasting 2 Multicasting Applications Multimedia Multimedia –television, presentations, etc. Teleconferencing.
CS 5565 Network Architecture and Protocols Godmar Back Lecture 22.
Network Layer4-1 Networking Layer Slides originally prepared by Jim Kurose and Keith Ross (for their textbook Computer Networking: A Top Down Approach.
Broadcast and Multicast. Overview Last time: routing protocols for the Internet  Hierarchical routing  RIP, OSPF, BGP This time: broadcast and multicast.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks  4.3 What ’ s inside a router r 4.4 IP: Internet.
Chapter 22 Network Layer: Delivery, Forwarding, and Routing Part 5 Multicasting protocol.
Chapter 15 Multicasting and Multicast Routing
Multicast Routing Protocols. The Need for Multicast Routing n Routing based on member information –Whenever a multicast router receives a multicast packet.
IPv6. r Initial motivation: 32-bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding.
© J. Liebeherr, All rights reserved 1 Multicast Routing.
Introduction to Multicast Routing Protocols
© J. Liebeherr, All rights reserved 1 IP Multicasting.
1 Spring Semester 2009, Dept. of Computer Science, Technion Internet Networking recitation #7 DVMRP.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
1 IP Multicasting Relates to Lab 10. It covers IP multicasting, including multicast addressing, IGMP, and multicast routing.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Internet routing protocols m RIP m OSPF m IGRP m BGP r Router architectures r IPv6 Today: r IPv6.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
CMPE 252A: Computer Networks Set 11:
Spring 2006CS 3321 Multicast Outline Link-state Multicast Distance-vector Multicast Protocol Independent Multicast.
1 Protocol Independent Multicast (PIM) To develop a scalable protocol independent of any particular unicast protocol –ANY unicast protocol to provide routing.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
2/25/20161 Multicast on the Internet CSE 6590 Fall 2009.
Internet Multicasting Routing: DVMRP r DVMRP: distance vector multicast routing protocol, RFC1075 r flood and prune: reverse path forwarding, source-based.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Communication Networks Recitation 11. Multicast & QoS Routing.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 IP: Internet Protocol Datagram format IPv4 addressing.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
IPv6 Initial motivation: 32-bit address space completely allocated by Additional motivation: header format helps speed processing/forwarding header.
Chapter 4: outline 4.1 introduction
Chapter 4: Network Layer
Some slides have been taken from:
IP Multicasting By Behzad Akbari Fall 2008
Multicast on the Internet
Multicast Instructor: Anirban Mahanti Office: ICT 745
Implementing Multicast
Optional Read Slides: Network Multicast
Presentation transcript:

Broadcast and multicast routing

R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing r Deliver packets from srce to all other nodes r Source duplication is inefficient: r Source duplication: how does source determine recipient addresses

In-network duplication r Flooding: when node receives brdcst pckt, sends copy to all neighbors m Problems: cycles & broadcast storm r Controlled flooding: node only brdcsts pkt if it hasn’t brdcst same packet before m Node keeps track of pckt ids already brdcsted m Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source r Spanning tree m No redundant packets received by any node

A B G D E c F A B G D E c F (a) Broadcast initiated at A (b) Broadcast initiated at D Spanning Tree r First construct a spanning tree r Nodes forward copies only along spanning tree

Spanning Tree: Creation r Center node r Each node sends unicast join message to center node m Message forwarded until it arrives at a node already belonging to spanning tree A B G D E c F (a)Stepwise construction of spanning tree A B G D E c F (b) Constructed spanning tree

Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers used m source-based: different tree from each sender to rcvrs m shared-tree: same tree used by all group members Shared tree Source-based trees

Approaches for building mcast trees Approaches: r source-based tree: one tree per source m shortest path trees m reverse path forwarding r group-shared tree: group uses one tree m minimal spanning (Steiner) m center-based trees …we first look at basic approaches, then specific protocols adopting these approaches

Shortest Path Tree r mcast forwarding tree: tree of shortest path routes from source to all receivers m Dijkstra’s algorithm R1 R2 R3 R4 R5 R6 R i router with attached group member router with no attached group member link used for forwarding, i indicates order link added by algorithm LEGEND S: source

Reverse Path Forwarding if (mcast datagram received on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram  rely on router’s knowledge of unicast shortest path from it to sender  each router has simple forwarding behavior:

Reverse Path Forwarding: example result is a source-specific reverse SPT –may be a bad choice with asymmetric links R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member datagram will be forwarded LEGEND S: source datagram will not be forwarded

Reverse Path Forwarding: pruning r forwarding tree contains subtrees with no mcast group members m no need to forward datagrams down subtree m “prune” msgs sent upstream by router with no downstream group members R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member prune message LEGEND S: source links with multicast forwarding P P P

Shared-Tree: Steiner Tree r Steiner Tree: minimum cost tree connecting all routers with attached group members r problem is NP-complete r excellent heuristics exists r not used in practice: m computational complexity m information about entire network needed m monolithic: rerun whenever a router needs to join/leave

Center-based trees r single delivery tree shared by all r one router identified as “center” of tree r to join: m edge router sends unicast join-msg addressed to center router m join-msg “processed” by intermediate routers and forwarded towards center m join-msg either hits existing tree branch for this center, or arrives at center m path taken by join-msg becomes new branch of tree for this router

Center-based trees: an example Suppose R6 chosen as center: R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member path order in which join messages generated LEGEND

Internet Multicasting Routing: DVMRP r DVMRP: distance vector multicast routing protocol, RFC1075 r flood and prune: reverse path forwarding, source-based tree m RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers m no assumptions about underlying unicast m initial datagram to mcast group flooded everywhere via RPF m routers not wanting group: send upstream prune msgs

DVMRP: continued… r soft state: DVMRP router periodically (1 min.) “forgets” branches are pruned: m mcast data again flows down unpruned branch m downstream router: reprune or else continue to receive data r routers can quickly regraft to tree m following IGMP join at leaf r odds and ends m commonly implemented in commercial routers m Mbone routing done using DVMRP

Tunneling Q: How to connect “islands” of multicast routers in a “sea” of unicast routers?  mcast datagram encapsulated inside “normal” (non- multicast-addressed) datagram  normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router  receiving mcast router unencapsulates to get mcast datagram physical topology logical topology

PIM: Protocol Independent Multicast r not dependent on any specific underlying unicast routing algorithm (works with all) r two different multicast distribution scenarios : Dense:  group members densely packed, in “close” proximity.  bandwidth more plentiful Sparse:  # networks with group members small wrt # interconnected networks  group members “widely dispersed”  bandwidth not plentiful

Consequences of Sparse-Dense Dichotomy: Dense r group membership by routers assumed until routers explicitly prune r data-driven construction on mcast tree (e.g., RPF) r bandwidth and non- group-router processing profligate Sparse : r no membership until routers explicitly join r receiver- driven construction of mcast tree (e.g., center- based) r bandwidth and non- group-router processing conservative

PIM- Dense Mode flood-and-prune RPF, similar to DVMRP but  underlying unicast protocol provides RPF info for incoming datagram  less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm  has protocol mechanism for router to detect it is a leaf-node router

PIM - Sparse Mode r center-based approach r router sends join msg to rendezvous point (RP) m intermediate routers update state and forward join r after joining via RP, router can switch to source-specific tree m increased performance: less concentration, shorter paths R1 R2 R3 R4 R5 R6 R7 join all data multicast from rendezvous point rendezvous point

PIM - Sparse Mode sender(s): r unicast data to RP, which distributes down RP-rooted tree r RP can extend mcast tree upstream to source r RP can send stop msg if no attached receivers m “no one is listening!” R1 R2 R3 R4 R5 R6 R7 join all data multicast from rendezvous point rendezvous point

PIM-SM(1) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2

PIM-SM(2) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 Receiver 1 Joins Group G C Creates (*, G) State, Sends (*, G) Join to the RP Join

PIM-SM(3) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 RP Creates (*, G) State

PIM-SM(4) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 Source Sends Data A Sends Registration to the RP Register Data IP tunnel between A and RP since multicast tree is not established

PIM-SM(5) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 RP decapsulates Registration Forwards Data Down the Shared Tree Sends Joins Towards the Source join

PIM-SM(6) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 RP Sends Register-Stop Once Data Arrives Natively Register-Stop

PIM-SM(7) SPT Switchover Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 C Sends (S, G) Joins to Join the Shortest Path Tree (SPT) join

PIM-SM(8) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 C starts receiving Data natively

PIM-SM(9) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 C Sends Prunes Up the RP tree for the Source. RP Deletes (S, G) OIF and Sends Prune Towards the Source Prune

PIM-SM(10) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 B, RP pruned

PIM-SM(11) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 join New receiver2 joins E Creates State and Sends (*, G) Join

PIM-SM(12) Receiver 1 Source Receiver 2 S R1 ABRPD CE R2 C Adds Link Towards E to the OIF List of Both (*, G) and (S, G) Data from Source Arrives at E