Lecture 16. Shortest Path Algorithms

Slides:



Advertisements
Similar presentations
Spring 2007Shortest Paths1 Minimum Spanning Trees JFK BOS MIA ORD LAX DFW SFO BWI PVD
Advertisements

October 31, Algorithms and Data Structures Lecture XIII Simonas Šaltenis Nykredit Center for Database Research Aalborg University
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Shortest Paths1 C B A E D F
Jim Anderson Comp 122, Fall 2003 Single-source SPs - 1 Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph.
CSC 213 Lecture 23: Shortest Path Algorithms. Weighted Graphs Each edge in weighted graph has numerical weight Weights can be distances, building costs,
Shortest Paths Definitions Single Source Algorithms –Bellman Ford –DAG shortest path algorithm –Dijkstra All Pairs Algorithms –Using Single Source Algorithms.
1 8-ShortestPaths Shortest Paths in a Graph Fundamental Algorithms.
1 Graphs ORD DFW SFO LAX Many slides taken from Goodrich, Tamassia 2004.
Shortest Paths Definitions Single Source Algorithms
Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
© 2004 Goodrich, Tamassia Shortest Paths1 Shortest Paths (§ 13.6) Given a weighted graph and two vertices u and v, we want to find a path of minimum total.
Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
CSC311: Data Structures 1 Chapter 13: Graphs II Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
Shortest Paths1 C B A E D F
© 2004 Goodrich, Tamassia Shortest Paths1 C B A E D F
CSC 213 Lecture 24: Minimum Spanning Trees. Announcements Final exam is: Thurs. 5/11 from 8:30-10:30AM in Old Main 205.
Lecture20: Graph IV Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Graphs – Shortest Path (Weighted Graph) ORD DFW SFO LAX
Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances,
Minimum Spanning Trees
Jim Anderson Comp 122, Fall 2003 Single-source SPs - 1 Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph.
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 Shortest Path Problem Topic 11 ITS033 – Programming & Algorithms C B A E D F Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program,
Shortest Paths C B A E D F
Graphs Part 2. Shortest Paths C B A E D F
CSC 213 – Large Scale Programming. Today’s Goals  Discuss what is meant by weighted graphs  Where weights placed within Graph  How to use Graph ’s.
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph. Want to compute a shortest path for each possible.
Shortest Paths 1 Chapter 7 Shortest Paths C B A E D F
The single-source shortest path problem (SSSP) input: a graph G = (V, E) with edge weights, and a specific source node s. goal: find a minimum weight (shortest)
CSC 213 – Large Scale Programming. Today’s Goals  Discuss what is meant by weighted graphs  Where weights placed within Graph  How to use Graph ’s.
Paths in a Graph : A Brief Tutorial Krishna.V.Palem Kenneth and Audrey Kennedy Professor of Computing Department of Computer Science, Rice University 1.
© 2010 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 Prim’s algorithm. 2 Minimum Spanning Tree Given a weighted undirected graph G, find a tree T that spans all the vertices of G and minimizes the sum.
1 Weighted Graphs CSC401 – Analysis of Algorithms Lecture Notes 16 Weighted Graphs Objectives: Introduce weighted graphs Present shortest path problems,
Data Structures and Algorithms1 Data Structures and algorithms (IS ZC361) Weighted Graphs – Shortest path algorithms – MST S.P.Vimal BITS-Pilani
Graphs Quebec Toronto Montreal Ottawa 449 km 255 km 200 km 545 km Winnipeg 2075 km 2048 km New York 596 km 790 km 709 km.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
CSCE 411 Design and Analysis of Algorithms Set 9: More Graph Algorithms Prof. Jennifer Welch Spring 2012 CSCE 411, Spring 2012: Set 9 1.
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
© 2010 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 COMP9024: Data Structures and Algorithms Week Twelve: Graphs (II) Hui Wu Session 1, 2014
Graphs ORD SFO LAX DFW Graphs 1 Graphs Graphs
Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Shortest Paths C B A E D F Shortest Paths
Graphs Part 2.
14 Graph Algorithms Hongfei Yan June 8, 2016.
COMP9024: Data Structures and Algorithms
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Trees
Shortest Path 6/18/2018 4:22 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Shortest Paths C B A E D F Shortest Paths 1
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Tree 11/3/ :04 AM Minimum Spanning Tree
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Trees
Chapter 13 Graph Algorithms
Graphs Part 2.
Graph Algorithms shortest paths, minimum spanning trees, etc.
Copyright © Aiman Hanna All rights reserved
Shortest Paths.
Minimum Spanning Trees
Weighted Graphs C B A E D F Sequences
Presentation transcript:

Lecture 16. Shortest Path Algorithms Talk at U of Maryland Lecture 16. Shortest Path Algorithms The single-source shortest path problem is the following: given a source vertex s, and a sink vertex v, we'd like to find the shortest path from s to v. Here shortest path means a sequence of directed edges from s to v with the smallest total weight. There are some subtleties here. Should we allow negative edges? Of course, there are no negative distances; nevertheless, there are actually some cases where negative edges make logical sense. But then there may not be a shortest path, because if there is a cycle with negative weight, we could simply go around that cycle as many times as we want and reduce the cost of the path as much as we like. To avoid this, we might want to detect negative cycles. This can be done in the algorithm itself. Non-negative cycles aren't helpful, either. Suppose our shortest path contains a cycle of non-negative weight. Then by cutting it out we get a path with the same weight or less, so we might as well cut it out.

Weighted Graphs PVD ORD SFO LGA HNL LAX DFW MIA 849 1843 142 802 1743 Talk at U of Maryland Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent distances, costs, etc. Example: In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports 849 PVD 1843 ORD 142 SFO 802 LGA 1743 1205 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA

Shortest Path Problem PVD ORD SFO LGA HNL LAX DFW MIA 849 1843 142 802 Talk at U of Maryland Shortest Path Problem Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v. Length of a path is the sum of the weights of its edges. Example: Shortest path between Providence and Honolulu Applications Internet packet routing Flight reservations Driving directions 849 PVD 1843 ORD 142 SFO 802 LGA 1743 1205 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA

Shortest Path Properties Talk at U of Maryland Shortest Path Properties Property 1: A subpath of a shortest path is itself a shortest path Property 2: There is a tree of shortest paths from a start vertex to all the other vertices Example: Tree of shortest paths from Providence 849 PVD 1843 ORD 142 SFO 802 LGA 1743 1205 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA

Talk at U of Maryland Dijkstra’s Algorithm The distance of a vertex v from a vertex s is the length of a shortest path between s and v Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex s Assumptions: the graph is connected the edges are undirected the edge weights are nonnegative We grow a “cloud” of vertices, beginning with s and eventually covering all the vertices We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices At each step We add to the cloud the vertex u outside the cloud with the smallest distance label, d(u) We update the labels of the vertices adjacent to u

Edge Relaxation d(z) = 75 d(z) = 60 Talk at U of Maryland Edge Relaxation Consider an edge e = (u,z) such that u is the vertex most recently added to the cloud z is not in the cloud The relaxation of edge e updates distance d(z) as follows: d(z)  min{d(z),d(u) + weight(e)} d(u) = 50 10 d(z) = 75 e u s z d(u) = 50 10 d(z) = 60 u e s z

Talk at U of Maryland Example C B A E D F 3 2 8 5 4 7 1 9 A 4 8 2 8 2 4 7 1 B C D 3 9   2 5 E F A 4 A 4 8 8 2 2 8 2 3 7 2 3 7 1 7 1 B C D B C D 3 9 3 9 5 11 5 8 2 5 2 5 E F E F

Example (cont.) A 4 8 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F A 4 8 2 7 2 3 Talk at U of Maryland Example (cont.) A 4 8 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F A 4 8 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F

Dijkstra’s Algorithm Algorithm DijkstraDistances(G, s) Talk at U of Maryland Dijkstra’s Algorithm Algorithm DijkstraDistances(G, s) Q  new heap-based priority queue for all v  G.vertices() if v = s setDistance(v, 0) else setDistance(v, ) l  Q.insert(getDistance(v), v) setLocator(v,l) while Q.isEmpty() u  Q.removeMin() for all e  G.incidentEdges(u) { relax edge e } z  G.opposite(u,e) r  getDistance(u) + weight(e) if r < getDistance(z) setDistance(z,r) Q.replaceKey(getLocator(z),r) A priority queue stores the vertices outside the cloud Key: distance Element: vertex Locator-based methods insert(k,e) returns a locator replaceKey(l,k) changes the key (distance) of an item We store two labels with each vertex: Distance (d(v) label) locator in priority queue

Analysis Graph operations Talk at U of Maryland Analysis Graph operations Method incidentEdges is called once for each vertex Label operations We set/get the distance and locator labels of vertex z O(deg(z)) times Setting/getting a label takes O(1) time Priority queue operations Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time Dijkstra’s algorithm runs in O((n + m) log n) time provided the graph is represented by the adjacency list structure Recall that Sv deg(v) = 2m The running time can also be expressed as O(m log n) since the graph is connected

Extension Algorithm DijkstraShortestPathsTree(G, s) Talk at U of Maryland Extension Using the template method pattern, we can extend Dijkstra’s algorithm to return a tree of shortest paths from the start vertex to all other vertices We store with each vertex a third label: parent edge in the shortest path tree In the edge relaxation step, we update the parent label Algorithm DijkstraShortestPathsTree(G, s) … for all v  G.vertices() setParent(v, ) for all e  G.incidentEdges(u) { relax edge e } z  G.opposite(u,e) r  getDistance(u) + weight(e) if r < getDistance(z) setDistance(z,r) setParent(z,e) Q.replaceKey(getLocator(z),r)

Why Dijkstra’s Algorithm Works Talk at U of Maryland Why Dijkstra’s Algorithm Works Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance. Suppose it didn’t find all shortest distances. Let F be the first wrong vertex the algorithm processed. When the previous node, D, on the true shortest path was considered, its distance was correct. But the edge (D,F) was relaxed at that time! Thus, so long as d(F)>d(D), F’s distance cannot be wrong. That is, there is no wrong vertex. A 8 4 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F

C’s true distance is 1, but it is already in the cloud with d(C)=5! Talk at U of Maryland Why It Doesn’t Work for Negative-Weight Edges Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance. A 8 4 If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud. 6 7 5 4 7 1 B C D -8 5 9 2 5 E F C’s true distance is 1, but it is already in the cloud with d(C)=5!

Bellman-Ford Algorithm Talk at U of Maryland Bellman-Ford Algorithm Works even with negative-weight edges Must assume directed edges (for otherwise we would have negative-weight cycles) Iteration i finds all shortest paths of length i . Running time: O(nm). Can be extended to detect a negative-weight cycle if it exists. Algorithm BellmanFord(G, s) for all v  G.vertices() if v = s setDistance(v, 0) else setDistance(v, ) for i  1 to n-1 do (*) for each directed edge e = u  z { relax edge e } r  getDistance(u) + weight(e) if r < getDistance(z) setDistance(z,r)

Correctness Lemma. After i repetitions of the "for" loop in BELLMAN-FORD, if there is a path from s to u with at most i edges, then d[u] is at most the length of the shortest path from s to u with at most i edges. Proof. By induction on i. The base case is i=0. Trivial. For the induction step, consider the shortest path from s to u with at most i edges. Let v be the last vertex before u on this path. Then the part of the path from s to v is the shortest path from s to v with at most i-1 edges. By the inductive hypothesis, d[v] after i-1 executions of the (*) "for" loop is at most the length of this path. Therefore, d[v] + w(u,v) is at most the length of the path from s to u, via v (as i-1st node). In the i'th iteration, d[u] gets compared with d[v] + w(u,v), and is set equal to it if d[v] + w(u,v) is smaller. Therefore, after i iterations of the (*) "for" loop, d[u] is at most the length of the shortest path from s to u that uses at most i edges. So the lemma holds.

Nodes are labeled with their d(v) values Talk at U of Maryland Bellman-Ford Example Nodes are labeled with their d(v) values 4 4 8 8 -2 -2 8 -2 4 7 1 7 1       3 9 3 9 -2 5 -2 5     4 4 8 8 -2 -2 5 7 1 -1 7 1 8 -2 4 5 -2 -1 1 3 9 3 9 6 9 4 -2 5 -2 5   1 9

DAG-based Algorithm Algorithm DagDistances(G, s) Talk at U of Maryland DAG-based Algorithm Algorithm DagDistances(G, s) for all v  G.vertices() if v = s setDistance(v, 0) else setDistance(v, ) Perform a topological sort of the vertices for u  1 to n do {in topological order} for each e  G.outEdges(u) { relax edge e } z  G.opposite(u,e) r  getDistance(u) + weight(e) if r < getDistance(z) setDistance(z,r) Works even with negative-weight edges Uses topological order Doesn’t use any fancy data structures Is much faster than Dijkstra’s algorithm Running time: O(n+m).

Nodes are labeled with their d(v) values Talk at U of Maryland 1 DAG Example Nodes are labeled with their d(v) values 1 1 4 4 8 8 -2 -2 4 8 -2 4 4 3 7 2 1 3 7 2 1       3 9 3 9 -5 5 -5 5     6 5 6 5 1 1 4 4 8 8 -2 -2 5 3 7 2 1 4 -1 3 7 2 1 4 8 -2 4 5 -2 -1 9 3 3 9 1 7 4 -5 5 -5 5   1 7 6 5 6 5 (two steps)

All-Pairs Shortest Paths: Dynamic Programming Talk at U of Maryland All-Pairs Shortest Paths: Dynamic Programming Find the distance between every pair of vertices in a weighted directed graph G. We can make n calls to Dijkstra’s algorithm (if no negative edges), which takes O(nmlog n) time. Likewise, n calls to Bellman-Ford would take O(n2m) time. We can achieve O(n3) time using dynamic programming (Floyd-Warshall algorithm). Algorithm AllPair(G) {assumes vertices 1,…,n} for all vertex pairs (i,j) if i = j D0[i,i]  0 else if (i,j) is an edge in G D0[i,j]  weight of edge (i,j) else D0[i,j]  +  for k  1 to n do for i  1 to n do for j  1 to n do Dk[i,j]  min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]} return Dn Uses only vertices numbered 1,…,k (compute weight of this edge) i Uses only vertices numbered 1,…,k-1 j Uses only vertices numbered 1,…,k-1 k