LIGO-G030281-00-D LIGO II1 AUX OPTICS SUPPORT Michael Smith, 6/11/03 STRAY LIGHT CONTROL ACTIVE OPTICS COMPENSATION OUTPUT MODE CLEANER PO MIRROR AND PO.

Slides:



Advertisements
Similar presentations
Stray Light Control & Viewports Michael Smith aLIGO NSF Review LIGO Livingston Observatory April LIGO-G v3.
Advertisements

Hiro Yamamoto LLO April 3, 2014 LIGO-G Core Optics related loss hierarchy of aLIGO Hiro Yamamoto LIGO/Caltech Introduction Loss related to geometry.
LIGO-G v2 Form F v1 Advanced LIGO1 SCATTERED LIGHT CONTROL in ADVANCED LIGO Michael Smith LIGO Laboratory Caltech, Pasadena, CA.
Spring LSC 2001 LIGO-G W E2 Amplitude Calibration of the Hanford Recombined 2km IFO Michael Landry, LIGO Hanford Observatory Luca Matone, Benoit.
Marcus Ng Mentor: Alan Weinstein Co-mentor: Robert Ward
Optics of GW detectors Jo van den Brand
1 LIGO-G v3 Transmission Monitoring Telescope and Suspension – TMS Eric Gustafson aLIGO NSF Review LIGO Livingston Observatory April 25-27, 2011.
LIGO-G D partial ADVANCED LIGO1 Optical Layout Cavity Lengths Input Mode Cleaner (IMC) »IMC FSR = ~9 MHz »Length = ~16.6 m = ~HAM1 to HAM3 separation.
LIGO-G W LIGO Scientific Collaboration Meeting – LLO March Summary of recent measurements of g factor changes induced by thermal loading.
rd ILIAS-GW annual general meeting 1 VIRGO Commissioning progress J. Marque (EGO)
Investigation of the influence of suspended optic’s motion on LIGO detector sensitivity Sanichiro Yoshida Southeastern Louisiana University.
Measurement of the laser beam profile at PSL to Mode Cleaner interface for the 40 Meter Prototype Interferometer A table of contents 1. Introduction 1.1.
20 Nov 2008G v21 Optical & Vacuum Equipment Layouts Dennis Coyne Mike Smith Luke Williams 20 Nov 2008 Adv. LIGO Team Meeting, Caltech, Pasadena,
Laser Interferometer Gravitational-wave Observatory1 Characterization of LIGO Input Optics University of Florida Thomas Delker Guido Mueller Malik Rakhmanov.
LIGO-G W 2005 CLEO/QELS Joint Symposium on Gravitational Wave Detection 1 High-Power Stabilized Lasers and Optics of GW Detectors Rick Savage.
Higher order laser modes in gravitational wave detectors
LIGO-G D Advanced LIGO Systems Design & Interferometer Sensing & Optics Peter Fritschel, LIGO MIT PAC 13 Meeting, 5 June 2003.
G D Initial LIGO improvements & Advanced LIGO P Fritschel PAC Meeting LLO, 18 May 2005.
LIGO-G D 1 Advanced LIGO Optical & Mechanical Layout Status Dennis Coyne, LIGO Caltech LSC Meeting, 21 Mar 2006 Version -01: with a couple of.
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
LIGO-G Z LIGO Commissioning Report LSC Meeting, Hanover August 19, 2003 Peter Fritschel, MIT.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Status of LIGO Aspen January, 2005 Nergis Mavalvala LIGO-G D Commissioning and detector improvements for S4.
1 1.ISC scope and activities 2.Initial Virgo status 3.Design requirements 4.Reference solution and design status 5.Plans toward completion 6.Technical.
LIGO- G R 40m Progress, LSC meeting, 3/031 40m Laboratory Upgrade Progress Report Osamu Miyakawa, Caltech 40m Technical Advisory Committee LIGO-G R.
LIGO-G Advanced LIGO Detector upgrade is planned for »Factor of 10 increase in distance probed (‘reach’) »Factor of 1000 increase in event.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
LIGO-G D “First Lock” for the LIGO Detectors 20 October 2000 LIGO Hanford Observatory Stan Whitcomb.
LIGO- G R Amaldi7 July 14 th, 2007 R. Ward, Caltech 1 DC Readout Experiment at the Caltech 40m Laboratory Robert Ward Caltech Amaldi 7 July 14.
LIGO Laboratory1 Enhanced and Advanced LIGO TCS Aidan Brooks - Caltech Hannover LSC-VIRGO Meeting, October 2007 LIGO-G Z.
LIGO-G Z Guido Mueller University of Florida For the LIGO Scientific Collaboration ESF Exploratory Workshop Perugia, Italy September 21 st –23.
LIGO-G D Commissioning, Part II PAC 12, June 2002 Peter Fritschel, LIGO MIT.
LSC August G Z Gingin High Optical Power Test Facility (AIGO) 1 High Optical Power Test Facility - Status First lock, auto-alignment and.
LIGO- G R Aspen winter conference, January Toward the Advanced LIGO optical configuration investigated in 40meter prototype Aspen winter.
40m AOS DRD, G R1 40m Auxiliary Optics Support Design Requirements Document & Conceptual Design Michael Smith 10/18/01 Stray Light Control Initial.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 eLIGO Input Optics Characterization and Performance Kate Dooley University of Florida.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
Advanced LIGO Simulation, 6/1/06 Elba G E 1 ✦ LIGO I experience ✦ FP cavity : LIGO I vs AdvLIGO ✦ Simulation tools ✦ Time domain model Advanced.
Modeling the Input Optics with e2e T. Findley, S. Yoshida, D. Dubois, N. Jamal, and R. Dodda Southeastern Louisiana University LIGO-G D.
Modeling of the Effects of Beam Fluctuations from LIGO’s Input Optics Nafis Jamal Shivanand Sanichiro Yoshida Biplab Bhawal LSC Conference Aug ’05 LIGO-G Z.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
1 Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison,
G D LIGO Commissioning Update LSC Meeting, March 16, 2004 Peter Fritschel.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
The VIRGO detection system
LIGO-G D Commissioning P Fritschel LIGO NSF review, 23 October 2002 M.I.T.
10-meter Interferometer Results M. Woods (special thanks to Steve Myers and Tim Slaton) Jan. 31, 2000 Commissioning Setup System Noise Monte Carlo simulation.
40m Optical Systems & Sensing DRD, G R 1 40m Optical Systems and Sensing Design Requirements Document & Conceptual Design Michael Smith 10/18/01.
LIGO-G d April 24, 2007 Auxiliary Optics System (AOS) Technical Breakout Presentation NSF Review of Advanced LIGO Project Mike Smith, Phil Willems.
Local control sensors for iKAGRA payloads and perspective (Optical lever) Kazuhiro Agatsuma 2013/Dec./5 ELiTES meeting at Tokyo1.
LIGO- G R Amaldi7 July 14 th, 2007 R. Ward, Caltech 1 Prototyping for eLIGO: Power Recycled Fabry Perot Michelson DARM RF ITMy ITMx BS PRM SRM.
Main Interferometer Subsystem
Auxiliary Optical Systems - AOS
Main Interferometer Subsystem
Auxiliary Optics System (AOS)
Aspen January, 2005 Nergis Mavalvala
First Lessons from the Advanced LIGO Integration Testing
Commissioning Update PAC 15, Dec. 11, 2003 Daniel Sigg.
Design of Stable Power-Recycling Cavities
Commissioning the LIGO detectors
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
40m Laboratory Upgrade Progress Report
Synthetic Sapphire Absorbance at 1064 nm
LIGO Interferometry CLEO/QELS Joint Symposium on Gravitational Wave Detection, Baltimore, May 24, 2005 Daniel Sigg.
Improving LIGO’s stability and sensitivity: commissioning examples
Detector Characterization Session
Squeezed Light Techniques for Gravitational Wave Detection
Auxiliary Optics System (AOS)
Presentation transcript:

LIGO-G D LIGO II1 AUX OPTICS SUPPORT Michael Smith, 6/11/03 STRAY LIGHT CONTROL ACTIVE OPTICS COMPENSATION OUTPUT MODE CLEANER PO MIRROR AND PO TELESCOPE INITIAL ALIGNMENT SYSTEM OPTICAL LEVER SYSTEM PHOTON DRIVE

LIGO-G D LIGO II2 STRAY LIGHT CONTROL REQUIREMENT: noise < 1/10 gravity wave signal »BAFFLES –Errant beam baffles:MC1, MC2, MC3, MMT1, MMT2, MMT3, PRM (45) –Input optics baffle: HAM2, HAM8 (3) –Recycling cavity elliptical baffles: ITMx, ITMy, PRM (9) –Arm cavity baffles: ITMx, ITMy, ETMx, ETMy (12) –ETM telescope input baffle (6) –Cryopump baffles Manifold baffle: in manifold between cryopump and ETM (3) Conical baffle: in vertex cryopump spool (3) »BEAM DUMPS –Ghost beam dumps in vertex area: ITMx, ITMy, BS, PRM, SRM (84) »OUTPUT FARADAY ISOLATOR (LIGO1) (3)

LIGO-G D LIGO II3 ACTIVE OPTICS COMPENSATION See Dave Ottaway presentation

LIGO-G D LIGO II4 OUTPUT MODE CLEANER Requirements: »Transmissivity>99% »Linewidth<2 MHz FWHM »Mode attenuation >10 4 for higher order modes > TEM 00 Physical Characteristics »Monolithic triangular cavity, flat-flat-curved »Lengthapprox 300 mm »Finesse> 400 Active length control--PZT, or thermal Mode matching telescope input Video camera for auto mode identification Integrated AS photodetector

LIGO-G D LIGO II5 OUTPUT MODE CLEANER CONCEPT

LIGO-G D LIGO II6 PICKOFF MIRROR Total required, 12 (LIGO1)

LIGO-G D LIGO II7 PO TELESCOPE 12:1 redux, off-axis parabolas Total required, 12 (LIGO1)

LIGO-G D LIGO II8 INITIAL ALIGNMENT SYSTEM ALIGNMENT Requirements: »Angular pos< 0.1 mrad »Transverse pos< 1 mm »Axial pos< 3 mm Equipment: »Pre-surveyed monuments »Optical transit square »Total station theodolite (electronic distance meas. & autocollimation) »Lateral transfer retroreflector »IR aucollimator/projector for alignment of PO mirrors, beam dumps, baffles, and PO telescopes

LIGO-G D LIGO II9 INITIAL ALIGNMENT SYSTEM VISUALIZATION CHAMBER ILLUMINATION CHAMBER VIDEO IMAGING NOTE: Existing chamber illuminators and video cameras will be used

LIGO-G D LIGO II10 OPTICAL LEVER SYSTEM REQUIREMENTS »Provide continuous pitch and yaw measurement of COC orientation »Direct access to mirror surface through external viewport »Long-term stability<0.1 mrad Physical Characteristics »Laser –Wavelength nm –PowerTBD »Sensor –Quad photodiode –Focal plane imaging system to sense angle only, coarse and fine zoom sensitivity »Total required 21

LIGO-G D LIGO II11 OPTICAL LEVER FOCUS LENS CONCEPT Focal length zoom 6.7 – 40m Angle sensitivity1 x x rad

LIGO-G D LIGO II12 PHOTON DRIVE REQUIREMENTS »Longitudinal force0.1 nN »Force noise power< 2.5 x N/Hz ½ »Dynamic range> 4 x 10 4 Hz ½ CHARACTERISTICS »Laser –Wavelength nm –Power1 W »Relative intensity noise< 2 x Hz -½ »Total required 6

LIGO-G D LIGO II13 PHOTON DRIVE CONCEPT