Is it possible to do work on an object that remains at rest? 1) yes 2) no 1. ConcepTest 6.1To Work or Not to Work 1. ConcepTest 6.1 To Work or Not to Work.

Slides:



Advertisements
Similar presentations
ConcepTest 6.1 To Work or Not to Work
Advertisements

ConcepTest 6.2a Friction and Work I
ConcepTest 5.1 To Work or Not to Work
WHAT IS FRICTION?. WHAT IS FRICTION? WHAT IS FRICTION? Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material.
ConcepTest 6.5a Kinetic Energy I
ConcepTest 5.1 To Work or Not to Work
ConcepTest Clicker Questions College Physics, 7th Edition
ConcepTest 6.1 To Work or Not to Work
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Work and Energy Conceptual MC
Work, Energy, And Power m Honors Physics Lecture Notes.
Work and Energy Quiz Show your work on a separate sheet of paper and staple your work to the back.
Kinetic Energy Lecturer: Professor Stephen T. Thornton
Chapter 9 Potential Energy & Conservation of Energy
Fall Final Review WKS: WORD PROBLEMS Part II. 1. A car travels at a constant speed of 15 m/s for 10 seconds. How far did it go?
Fall Final Review WKS: WORD PROBLEMS. Average Speed 1. A rock is dropped from the top of a tall cliff 9 meters above the ground. The ball falls freely.
a) The kinetic energy of the car. b) The distance it takes to stop.
Module 5, Recitation 1 Concept Problems. Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest To Work or Not to Work.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
1 By what factor does the kinetic energy of a car change when its speed is tripled? 1) no change at all 2) factor of 3 3) factor of 6 4) factor of.
Conservation of Energy Energy is Conserved!. The total energy (in all forms) in a “closed” system remains constant The total energy (in all forms) in.
Review for Exam #3 October 26, Is it possible to do work on an object that remains at rest? 1.Yes 2.No.
Work Lecturer: Professor Stephen T. Thornton
Work and Energy October 17, Your instructor releases a bowling ball as demonstrated. The ball will 60 0 of 5 1.Return to its original release height.
Applications of Newton’s Laws
Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest 6.1To Work or Not to Work ConcepTest 6.1 To Work or Not to Work.
A.S – What is Energy?  Energy is a measure of an object’s ability to cause a change in itself and/or its surroundings In other words,
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Work and Kinetic Energy
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Is it possible to do work on an object that remains at rest? a) yes b) no ConcepTest 3.1To Work or Not to Work ConcepTest 3.1 To Work or Not to Work.
Chapter 7 Work and Kinetic Energy
Energy m m Physics 2053 Lecture Notes Energy.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Module 5, Recitation 1 Concept Problems. Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest To Work or Not to Work.
Is it possible to do work on an object that remains at rest? 1) yes 2) no.
Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest 7.1To Work or Not to Work ConcepTest 7.1 To Work or Not to Work.
Is it possible to do work on an object that remains at rest? 1) yes 2) no.
Copyright © 2010 Pearson Education, Inc. Chapter 8 Potential Energy and Conservation of Energy.
21. ConcepTest 4.11On an Incline 21. ConcepTest 4.11 On an Incline 1) case A 2) case B 3) both the same (N = mg) 4) both the same (0 < N < mg) 5) both.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 7 Physics, 4 th Edition James S. Walker.
Pre-Lecture Questions
Work and Energy.
Fall Semester Review: Physics Situation 1: Air resistance is ignored. A person is standing on a bridge that is 150 m above a river. a. If a stone with.
Lecture 11: Potential Energy & Energy Conservation.
332 – UNIT 6 WORK & ENERGY.
Is it possible to do work on an object that remains at rest? 1) yes 2) no 1. ConcepTest 6.1To Work or Not to Work 1. ConcepTest 6.1 To Work or Not to Work.
W = F x d W = F x 0 = 0 Power = work / time PE  KE PE = mgh KE = ½ mv2.
Work, Power, Energy and Motion Work, Power, Energy and Motion moving train cars moving electrons nuclear forces chemical forces gravitational force Electrical.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Is it possible to do work on an object that remains at rest? a) yes b) no ConcepTest 5.1To Work or Not to Work ConcepTest 5.1 To Work or Not to Work.
PHYS 1110 Lecture 5 Professor Stephen Thornton September 11, 2012.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2008 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Potential and Kinetic Energy How is all energy divided? Potential Energy Kinetic Energy All Energy Gravitation Potential Energy Elastic Potential Energy.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
PHYSICS 111SI- WORK. Formulas  Work in the x direction = Force in the x direction * displacement in the x direction  W=F//S  Work is in joule (N *
Copyright © by Holt, Rinehart and Winston. All rights reserved. Chapter 5 Work and Energy.
ConcepTest 4.1a Newton’s First Law I
Physics: Principles with Applications, 7th edition
Chapter 5 Work and Energy.
Warm-up (2/12/18) Which of the following do you believe are examples of when you would be doing work? Why did you choose those examples? Shoveling snow.
from rest down a plane inclined at an angle q with the horizontal.
ConcepTest Clicker Questions Chapter 7
Physics: Principles with Applications, 7th edition
ConcepTest Clicker Questions Chapter 7
1 By what factor does the kinetic energy of a car change when its speed is tripled? 1) no change at all 2) factor of 3 3) factor of 6 4) factor of.
Physics: Principles with Applications, 6th edition
Presentation transcript:

Is it possible to do work on an object that remains at rest? 1) yes 2) no 1. ConcepTest 6.1To Work or Not to Work 1. ConcepTest 6.1 To Work or Not to Work

2. ConcepTest 6.2aFriction and Work I 2. ConcepTest 6.2a Friction and Work I 1) friction does no work at all 2) friction does negative work 3) friction does positive work A box is being pulled across a rough floor at a constant speed. What can you say about the work done by friction?

In a baseball game, the catcher stops a 90-mph pitch. What can you say about the work done by the catcher on the ball? 1) catcher has done positive work 2) catcher has done negative work 3) catcher has done zero work 3. ConcepTest 6.2cPlay Ball! 3. ConcepTest 6.2c Play Ball!

4. ConcepTest 6.2dTension and Work 4. ConcepTest 6.2d Tension and Work 1) tension does no work at all 2) tension does negative work 3) tension does positive work A ball tied to a string is being whirled around in a circle. What can you say about the work done by tension?

5. ConcepTest 6.3Force and Work 5. ConcepTest 6.3 Force and Work 1) one force 2) two forces 3) three forces 4) four forces 5) no forces are doing work A box is being pulled up a rough incline by a rope connected to a pulley. How many forces are doing work on the box?

6. ConcepTest 6.4Lifting a Book 6. ConcepTest 6.4 Lifting a Book You lift a book with your hand in such a way that it moves up at constant speed. While it is moving, what is the total work done on the book? 1) mg   r 2) F HAND   r 3) (F HAND + mg)   r 4) zero 5) none of the above mg rrrr F HAND v = const a = 0

By what factor does the kinetic energy of a car change when its speed is tripled? 1) no change at all 2) factor of 3 3) factor of 6 4) factor of 9 5) factor of ConcepTest 6.5aKinetic Energy I 7. ConcepTest 6.5a Kinetic Energy I

Car #1 has twice the mass of car #2, but they both have the same kinetic energy. How do their speeds compare? 8. ConcepTest 6.5bKinetic Energy II 8. ConcepTest 6.5b Kinetic Energy II 1) 2 v 1 = v 2 2)  2 v 1 = v 2 3) 4 v 1 = v 2 4) v 1 = v 2 5) 8 v 1 = v 2

9. ConcepTest 6.6aFree Fall I 9. ConcepTest 6.6a Free Fall I 1) quarter as much 2) half as much 3) the same 4) twice as much 5) four times as much Two stones, one twice the mass of the other, are dropped from a cliff. Just before hitting the ground, what is the kinetic energy of the heavy stone compared to the light one? Two stones, one twice the mass of the other, are dropped from a cliff. Just before hitting the ground, what is the kinetic energy of the heavy stone compared to the light one?

In the previous question, just before hitting the ground, what is the final speed of the heavy stone compared to the light one? 1) quarter as much 2) half as much 3) the same 4) twice as much 5) four times as much 10. ConcepTest 6.6bFree Fall II 10. ConcepTest 6.6b Free Fall II

A child on a skateboard is moving at a speed of 2 m/s. After a force acts on the child, her speed is 3 m/s. What can you say about the work done by the external force on the child? 1) positive work was done 2) negative work was done 3) zero work was done 11. ConcepTest 6.7Work and KE 11. ConcepTest 6.7 Work and KE

12. ConcepTest 6.8aSlowing Down 12. ConcepTest 6.8a Slowing Down 1) 20 m 2) 30 m 3) 40 m 4) 60 m 5) 80 m If a car traveling 60 km/hr can brake to a stop within 20 m, what is its stopping distance if it is traveling 120 km/hr? Assume that the braking force is the same in both cases. If a car traveling 60 km/hr can brake to a stop within 20 m, what is its stopping distance if it is traveling 120 km/hr? Assume that the braking force is the same in both cases.

13. ConcepTest 6.8bSpeeding Up I 13. ConcepTest 6.8b Speeding Up I 1) 0  30 mph 2) 30  60 mph 3) both the same A car starts from rest and accelerates to 30 mph. Later, it gets on a highway and accelerates to 60 mph. Which takes more energy, the 0  30 mph, or the 30  60 mph?

The work W 0 accelerates a car from 0 to 50 km/hr. How much work is needed to accelerate the car from 50 km/hr to 150 km/hr? 14. ConcepTest 6.8cSpeeding Up II 14. ConcepTest 6.8c Speeding Up II 1) 2 W 0 2) 3 W 0 3) 6 W 0 4) 8 W 0 5) 9 W 0

15. ConcepTest 6.9aWork and Energy I 15. ConcepTest 6.9a Work and Energy I 1) m 1 2) m 2 3) they will go the same distance Two blocks of mass m 1 and m 2 (m 1 > m 2 ) slide on a frictionless floor and have the same kinetic energy when they hit a long rough stretch (  > 0), which slows them down to a stop. Which one goes farther? m1m1 m2m2

A golfer making a putt gives the ball an initial velocity of v 0, but he has badly misjudged the putt, and the ball only travels one-quarter of the distance to the hole. If the resistance force due to the grass is constant, what speed should he have given the ball (from its original position) in order to make it into the hole? 1) 2 v 0 2) 3 v 0 3) 4 v 0 4) 8 v 0 5) 16 v ConcepTest 6.9bWork and Energy II 16. ConcepTest 6.9b Work and Energy II

Is it possible for the kinetic energy of an object to be negative? 1) yes 2) no 17. ConcepTest 6.10Sign of the Energy I 17. ConcepTest 6.10 Sign of the Energy I

Is it possible for the gravitational potential energy of an object to be negative? 1) yes 2) no 18. ConcepTest 6.11Sign of the Energy II 18. ConcepTest 6.11 Sign of the Energy II