1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.

Slides:



Advertisements
Similar presentations
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Advertisements

Analysis Modeling.
Chapter 22 Object-Oriented Systems Analysis and Design and UML Systems Analysis and Design Kendall and Kendall Fifth Edition.
CS3773 Software Engineering Lecture 03 UML Use Cases.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
L4-1-S1 UML Overview © M.E. Fayad SJSU -- CmpE Software Architectures Dr. M.E. Fayad, Professor Computer Engineering Department, Room #283I.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 8 Analysis Modeling
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Chapter 21 Object-Oriented Analysis
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Sharif University of Technology1 Design and Use-case Realization Software Engineering Laboratory Fall 2006.
Chapter 6 Requirements Modeling: Scenarios, Information, and Analysis Classes Slide Set to accompany Software Engineering: A Practitioner’s Approach,
Object-Oriented Analysis
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Analysis Modeling. Class-Based Modeling Identify analysis classes by examining the problem statement Use a “grammatical parse” to isolate potential classes.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 Object-Oriented Testing CIS 375 Bruce R. Maxim UM-Dearborn.
CS 4850/01: CS Senior Project Fall 2014 Overview of Software Requirements and OO Analysis.
These slides are designed to accompany Web Engineering: A Practitioner’s Approach (The McGraw-Hill Companies, Inc.) by Roger Pressman and David Lowe, copyright.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Requirement Engineering. Review of Last Lecture Problems with requirement Requirement Engineering –Inception (Set of Questions) –Elicitation (Collaborative.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Programming in Java Unit 3. Learning outcome:  LO2:Be able to design Java solutions  LO3:Be able to implement Java solutions Assessment criteria: 
Copyright 2002 Prentice-Hall, Inc. Chapter 2 Object-Oriented Analysis and Design Modern Systems Analysis and Design Third Edition Jeffrey A. Hoffer Joey.
Chapter 9 요구사항 모델링: 시나리오 기반 방법론 Requirements Modeling: Scenario-Based Methods 임현승 강원대학교 Revised from the slides by Roger S. Pressman and Bruce R. Maxim.
©Ian Sommerville 2006Software Engineering, 8th edition. Chapter 8 Slide 1 Object-oriented and Structured System Models.
Developed by Reneta Barneva, SUNY Fredonia for CSIT 425 Requirements Modeling.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 8: Analysis Modeling Software Engineering: A Practitioner’s Approach, 6/e Chapter.
Chapter 8 Analysis & Modeling. Data Modeling examines data objects independently of processing focuses attention on the data domain creates a model at.
Object Oriented Analysis
L6-S1 UML Overview 2003 SJSU -- CmpE Advanced Object-Oriented Analysis & Design Dr. M.E. Fayad, Professor Computer Engineering Department, Room #283I College.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 7: Requirements Engineering Software Engineering: A Practitioner’s Approach, 6/e.
1 Chapter 5 Lecture 5: Understanding Requirements Slide Set to accompany Software Engineering: A Practitioner’s Approach, 7/e by Roger S. Pressman Slides.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
CIS 112 Exam Review. Exam Content 100 questions valued at 1 point each 100 questions valued at 1 point each 100 points total 100 points total 10 each.
CS 4850: Senior Project – Spring 2009 CS 4850: Senior Project Spring 2009 Overview of Software Requirements and OO Analysis.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Analysis Modeling CpSc 372: Introduction to Software Engineering
1 Software Engineering: A Practitioner’s Approach, 7/e Chapter 2 Process: A Generic View Software Engineering: A Practitioner’s Approach, 7/e Chapter 2.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 10 요구사항 모델링 : 클래스 기반 방법론 Requirements Modeling: Class-Based Methods 임현승 강원대학교 Revised from the slides by Roger S. Pressman and Bruce R. Maxim for.
Lecture 9-1 : Intro. to UML (Unified Modeling Language)
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 5 System Modeling. What is System modeling? System modeling is the process of developing abstract models of a system, with each model presenting.
Unit-3 Identifying use cases Object Analysis Classification
1 Lecture 15: Chapter 19 Testing Object-Oriented Applications Slide Set to accompany Software Engineering: A Practitioner’s Approach, 7/e by Roger S. Pressman.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Fall 2007 Week 9: UML Overview MSIS 670: Object-Oriented Software Engineering.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 8.1 Requirements Analysis Rules of Thumb Rules of Thumb Models should focus on requirements that are visible within the problem or business domain. The.
Chapter 8 Analysis Engineering
Software Engineering: A Practitioner’s Approach, 6/e Chapter 18 Analysis Modeling for WebApps copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
Software Engineering: A Practitioner’s Approach, 6/e Chapter 18 Analysis Modeling for WebApps copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
Object-Oriented Analysis
Chapter 9 Requirements Modeling: Scenario-Based Methods
Chapter 24 Testing Object-Oriented Applications
Overview of Software Requirements
CRC Modeling (class-relationship-collaborator)
Chapter 10 Requirements Modeling: Class-Based Methods
Chapter 19 Testing Object-Oriented Applications
Software Engineering: A Practitioner’s Approach, 6/e Chapter 8 Analysis Modeling copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University.
Chapter 19 Testing Object-Oriented Applications
Chapter 22 Object-Oriented Systems Analysis and Design and UML
Presentation transcript:

1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e Lecture note: Mehdi Bahrami PNU of Boushehr

2 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Chapter 21 Object-Oriented Analysis

3 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Domain Analysis DOMAIN ANALYSIS SOURCES OF DOMAIN KNOWLEDGE DOMAIN ANALYSIS MODEL techncial literature existing applications customer surveys expert advice current/future requirements class taxononmies reuse standards functional models domain languages

4 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 OOA- A Generic View define use cases extract candidate classes establish basic class relationships define a class hierarchy identify attributes for each class specify methods that service the attributes indicate how classes/objects are related build a behavioral model iterate on the first five steps

5 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Use Cases  a scenario that describes a “thread of usage” for a system  actors represent roles people or devices play as the system functions  users can play a number of different roles for a given scenario

6 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Developing a Use Case  What are the main tasks or functions that are performed by the actor?  What system information will the the actor acquire, produce or change?  Will the actor have to inform the system about changes in the external environment?  What information does the actor desire from the system?  Does the actor wish to be informed about unexpected changes?

7 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Selecting Classes—Criteria needed services multiple attributes common attributes common operations essential requirements retained information

8 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Unified Modeling Language (UML) User model view. This view represents the system (product) from the user’s (called “actors” in UML) perspective. Structural model view. Data and functionality is viewed from inside the system. That is, static structure (classes, objects, and relationships) is modeled. Behavioral model view. This part of the analysis model represents the dynamic or behavioral aspects of the system. Implementation model view. The structural and behavioral aspects of the system are represented as they are to be built. Environment model view. The structural and behavioral aspects of the environment in which the system is to be implemented are represented.

9 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 UML: Use-Case Diagram

10 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 CRC Modeling

11 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Guidelines for Allocating Responsibilities to Classes 1. System intelligence should be evenly distributed. 2. Each responsibility should be stated as generally as possible. 3. Information and the behavior that is related to it should reside within the same class. 4. Information about one thing should be localized with a single class, not distributed across multiple classes. 5. Responsibilities should be shared among related classes, when appropriate.

12 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Reviewing the CRC Model 1. All participants in the review (of the CRC model) are given a subset of the CRC model index cards. 2. All use-case scenarios (and corresponding use-case diagrams) should be organized into categories. 3. The review leader reads the use-case deliberately. As the review leader comes to a named object, she passes the token to the person holding the corresponding class index card. 4. When the token is passed, the holder of the class card is asked to describe the responsibilities noted on the card. The group determines whether one (or more) of the responsibilities satisfies the use-case requirement. 5. If the responsibilities and collaborations noted on the index cards cannot accommodate the use-case, modifications are made to the cards.

13 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 UML: Class Diagrams Generalization- specialization Composite aggregates

14 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 UML: Package Reference

15 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Relationships between Objects

16 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Object-Behavior Model 1. Evaluate all use-cases to fully understand the sequence of interaction within the system. 2. Identify events that drive the interaction sequence and understand how these events relate to specific objects. 3. Create an event trace [RUM91] for each use-case. 4. Build a state transition diagram for the system 5. Review the object-behavior model to verify accuracy and consistency

17 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 UML: State Transition

18 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 UML: Event Trace