RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Progress of Alfven wave experiment in SUNIST The 2 nd A3 Foresight Workshop on Spherical Torus, January, 2014, Beijing, China Y. Tan 1*, Z. Gao 1,
1 Electron Bernstein Wave Research and Plans Gary Taylor Presentation to the 16th NSTX Program Advisory Committee September 9, 2004.
1 ST workshop 2008 Conception of LHCD Experiments on the Spherical Tokamak Globus-M O.N. Shcherbinin, V.V. Dyachenko, M.A. Irzak, S.A. Khitrov A.F.Ioffe.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Study of transport simulation on RF heated and current driven EAST plasma Siye Ding Under instruction of Prof. Baonian Wan 12/09/2009.
1 Association Euratom-Cea TORE SUPRA Tore Supra “Fast Particles” Experiments LH SOL Generated Fast Particles Meeting Association Euratom IPP.CR, Prague.
HT-7 ASIPP Density Modulation Experiment within Lithium coating on HT-7 Tokamak Wei Liao,Yinxian Jie, Xiang Gao and the HT-7 team Institute of Plasma Physics,
1 Modelling of Configuration Optimization in the HL-2A Tokamak Gao Qingdi Zhang Jinhua Li Fangzhu Southwestern Institute of physics, P O Box 432, Chengdu.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
The study of MARFE during long pulse discharges in the HT-7 tokamak W.Gao, X.Gao, M.Asif, Z.W.Wu, B.L.Ling, and J.G.Li Institute of Plasma Physics, Chinese.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
Review of Collaboration Activities J.Q. Dong* H.D. He, Y. Shen, and A.P. Sun Southwestern Institute of Physics, China *Institute for Fusion Theory and.
ASIPP 研究生:章文扬 导师:高翔,李亚东 磁剪切对微观湍流作用机制的实验研究 December 8, 2009 Hefei, China.
1 托卡马克位形优化 (2) 高庆弟 SWIP 核工业西南物理研究院 成都. 2 Nonlinearity of LH wave absorption  The plasma temperature in HL-2A is much lower than that in future reactor.
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
HT-7 HIGH POWER MICROWAVE TEST SYSTEM AND EXPERIMENTS WANG Mao, LIU Yue-xiu, SHAN Jia-fang, LIU Fu-kun, XU Han-dong, YU Jia-wen Institute of Plasma Physics,
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 8. Heating and current drive Neutral beam heating and current drive,... to be continued.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
The propagation of a microwave in an atmospheric pressure plasma layer: 1 and 2 dimensional numerical solutions Conference on Computation Physics-2006.
EAST Data processing of divertor probes on EAST Jun Wang, Jiafeng Chang, Guosheng Xu, Wei Zhang, Tingfeng Ming, Siye Ding Institute of Plasma Physics,
Direct Observation of Runaway Electron Beams in EAST Yuejiang Shi Baonian Wan, Jia Fu, Huixian Gao, Fudi Wang, Jiahong Li, and EAST team Institute of Plasma.
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
RF codes for Transp Transp User Course 2014 Jim Conboy.
ASIPP YOUNIS Jawad, WAN Baonian, LIN Shiyao, SHI Yuejiang, and HT-7 Team HT-7 Study of LHW current drive efficiency and fast electron distribution.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
姓名:章文扬 导师:高翔,李亚东 Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei, Anhui , P.R.China 博士中检 HT-7 芯部湍流的实验研究.
MHD Suppression with Modulated LHW on HT-7 Superconducting Tokamak* Support by National Natural Science Fund of China No J.S.Mao, J.R.Luo, B.Shen,
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
HT-7 Soft x-ray PHA diagnostics in the HT-7 and the EAST Z.Y.Chen, Y.J.Shi,B.Lv,B.N.Wan, L.Q.Hu, S.Y.Lin Q.S.Hu, S.X.Liu, Institute of Plasma Physics,Chinese.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
Comprehensive ITER Approach to Burn L. P. Ku, S. Jardin, C. Kessel, D. McCune Princeton Plasma Physics Laboratory SWIM Project Meeting Oct , 2007.
D. Tskhakaya, LH SOL Generated Fast Particles Meeting IPP.CR, Prague December 16-17, 2004 Quasi-PIC modelling of electron acceleration in front of the.
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
ASIPP HT-7 Behaviors of Impurity and Hydrogen Recycling on the HT-7 Tokamak J. Huang*, B.N. Wan, X.Z. Gong, Z.W. Wu and the HT-7 Team Institute of Plasma.
HT-7 A new soft x-ray PHA diagnostic in the HT-7 tokamak Zhongyong Chen, Yuejiang Shi,Bo Lv,Baonian Wan, Shiyao Lin,Liqun Hu,Qingsheng Hu, Shenxia Liu,Shiyao.
Internal collapse of the plasma during the long pulse discharge and its influence on the plasma performance HT-7 ASIPP ASIPP L.Q. Hu and HT-7 Team Institute.
1 LHCD Properties with a New Lower Hybrid Wave Antenna on HT-7 Tokamak Wei Wei,Guangli Kuang,Bojiang Ding,Weici Shen and HT-7 Team Institute of Plasma.
Summary of RF-Related Presentations at the 2011 EPS Meeting G. Taylor NSTX Physics Meeting July 25, 2011 NSTX Supported by 1.
Simulation of Non-Solenoidal Current Rampup in NSTX C. E. Kessel and NSTX Team Princeton Plasma Physics Laboratory APS-DPP Annual Meeting, Savannah, Georgia,
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Nonlinear plasma-wave interactions in ion cyclotron range of frequency N Xiang, C. Y Gan, J. L. Chen, D. Zhou Institute of plasma phsycis, CAS, Hefei J.
HT-7 ASIPP Investigation on Z eff and impurities behavior with molybdenum limiter in lithium coating experiments on HT-7 tokamak Presented by Y.J.Chen.
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
Lower Hybrid Wave Coupling and Current Drive Experiments in HT-7 Tokamak Weici Shen Jiafang Shan Handong Xu Min Jiang HT-7 Team Institute of Plasma Physics,
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
低杂波加热的射线追踪以及全 波解模拟 杨程 等离子体所五室. OUTLINE 理论以及数值模拟方法介绍 1 )射线追踪( GENRAY ) 2 )全波解( TORLH ) 两种方法对一个物理问题 —— 低杂波的 spectral gap 的研究和比较.
Member of the Helmholtz Association T. Zhang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Radial Correlation Analysis of.
9-12 Sept. 2002E. BARBAT0-ENEA, TTF, Cordoba1 Electron Internal Transport barriers by LHCD and ECRH in FTU-high density plasmas E. Barbato Associazione.
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Center for Plasma Edge Simulation
A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, H. St John
First Experiments Testing the Working Hypothesis in HSX:
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Influence of energetic ions on neoclassical tearing modes
Near-Field Physics of Lower-Hybrid Wave Coupling to Long-Pulse, High Temperature Plasmas in Tore Supra A dynamic Stark effect measurement performed near.
Presentation transcript:

RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP

OUTLINE LHW ICRF Synergy of LHW and ICRF/IBW Future Considerations Summary ASIPP

LHW Coupling between LHW and Plasma Ray tracing and current drive Effect of LHCD on radial electric field ASIPP

Coupling between LHW and Plasma The launched spectrum from the LHW antenna can be calculated at a given plasma condition. Effects of wave-guide phase difference and plasma condition on the power spectrum and the reflection are obtained. LHW Spectra at different 

Ray tracing and current drive With combining a ray-tracing code and a 2-D Fokker-Planck equation, we can calculate ray-trace of wave beam, power deposition, driven plasma current profile. The radial diffusion of fast electron is considered. It is only valid for the circular cross section plasma. It can be used to explain HT-7 experimental results effectively.

Ray trace of the wave beam ( N // peak =2.95)

 Power deposition and driven current vs 

B t Power deposition and driven current vs B t

T e Power deposition and driven current vs T e

A typical waveform of LHCD experiments (#46693) n e =1.5  m -3, I p =220kA, B T =2.0T,, N // peak =2.9,P LH =240kW. ASIPP

An ITB seems visible in the region around r/a ~ 0.55 Electron temperature profiles Ion temperature profiles ASIPP

Power deposition and current density profile ASIPP

a low magnetic shear is possibly formed because of the hollow current profile inside the surface of q=2 (r/a~0.8). Experiments described in early references show that a low magnetic shear inside the q=2 surface is a favorable condition to form an ITB ASIPP

Effect of LHCD on radial electric field Based on electron’s radial force equilibrium and the LHCD simulation code, the effect of LHCD on radial electric field profile is calculated. It possibly offers a tool for explaining LHCD to improve plasma confinement.

Typical waveforms of LHCD experiment with eITB

Electron temperature profiles in OH and LHCD phase

Magnetic shear decreases during the LHCD plasma Simulation results with the experimental parameters (a) power deposition profile (b)driven current profile and q profile

A notch structure in  E r is formed near the layer with strong deposition of LHW. The largest E r (LHCD) gradient locates at the position of ~10cm, which is well consistent with the ITB region indicated by the T e profile. Simulated profiles of (a) radial electric field and (b) its shear in OH and LHCD phase

ICRF Coupling between ICW and Plasma Ray-tracing code for IC waves in tokamak plasma ASIPP

Coupling between ICW and Plasma (ANT10 from Japan) The coupling of the antenna is calculated in a slab geometry. The model is three dimensional and includes the effect of connections to a transmission line. The coupling code based on the variational principle can give the self-consistent current flowing in the antenna, the field excited inside the plasma, and the antenna impedance for circular shape plasma.

Impedance versus the distance E y distribution at the plasma surface (0,  )

Ray-tracing code for IC waves in tokamak plasma Ray trace of wave beam, power deposition profile in plasma are obtained. ICRF wave propagation and deposition for a noncircular tokamak can also be studied. Plasma temperature can be modified by the ICRF heating.

Poloidal  =0.4,  =1.8,f=55MHz,B t =3.5T, Te(0)=2.0keV, Ti(0)=3.0keV,n H / n D =0.15,ne(0)=3.5x10 19 m –3, nea=9.0x10 18 m –3 Toroidal Ray tracing for EAST D(H) scenario

Power deposition profiles for EAST D(H) scenarios at different temperatures  =0.4,  =1.8,f=55MHz,B t =3.5T,n H /n D =0.15,ne(0)=5x10 19 m –3, nea=5x10 18 m –3

Synergy of LHW and ICRF/IBW Synergy of LHW and IBW (From FTU, Italy) Synergy of LHW and ICRF Synergetic effects of LHW and IBW/ICRF are preliminarily simulated for HT-7 tokamak. The electron distribution, LHW power deposition and driven current are affected by both IBW and fast wave. The work is just a kick-off, further work is under process.

Electron distribution function with (a) LHW (b) LHW+IBW

LHW power deposition Driven current profile

Profiles of LHW power deposition and driven current without fast wave Profiles of LHW power deposition and driven current with fast wave

Future Consideration We intend to develop the simulation of coupling, propagation, heating, current drive for LHW and IBW/ICW, and the synergy of LHW and IBW/ICW for EAST tokamak, even for ITER. After that, we intend to couple the plasma transport to the above code with the co-operation of other divisions and laboratories. 1.The coupling of wave and plasma in the non-circular cross section 2.The propagation and absorption of LHW in the non-circular cross section 3.Full wave code for IC waves in tokamak for circular / noncircular plasmas (Toric, from Germany) 4.Synergetic simulation of LHW and IBW/ICRF 5.Combination of Transport and heating/drive simulation.

Summary The coupling between wave and plasma in the slab geometry is obtained, the more complicated geometries are under process. The ray tracing and current drive of LHW in circular plasma are achieved, the extension to the non-circular case is possible. The present ICRF code is based on the ray-tracing method, the full wave code (TORIC) is under development. Synergetic simulation of LHW and IBW/ICRF is underway. Combination of Transport and heating/drive simulation will be done next.

Thank you for your attention!