2013 Hangzhou Workshop on Quantum Matter, April 22, 2013

Slides:



Advertisements
Similar presentations
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Advertisements

The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Concepts in High Temperature Superconductivity
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing Newton Institute, Cambridge Mott Physics, Sign Structure, and High-Tc.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
ISCOM2009 International symposium on crystalline organic metals, superconductors, ferromagnets announcement At Niseko in Hokkaido, Japan On Sep. 12 – 17,
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Superconductivity in Zigzag CuO Chains
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Prelude: Quantum phase transitions in correlated metals SC NFL.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Whither Strongly Correlated Electron Physics ? T.M.Rice ETHZ & BNL What`s so unique about the cuprates among the many materials with strongly correlated.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Searching for spin-liquids and non-Fermi liquids in quantum strongly correlated systems.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Fermions and spin liquid Patrick Lee MIT. Conventional Anti-ferromagnet (AF): 1970 Nobel Prize Louis Néel Cliff Shull 1994 Nobel Prize.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
2D-MIT as a Wigner-Mott Transition Collaborators: John Janik (FSU) Darko Tanaskovic (FSU) Carol Aguiar (FSU, Rutgers) Eduardo Miranda (Campinas) Gabi.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
LUTTINGER LIQUID Speaker Iryna Kulagina T. Giamarchi “Quantum Physics in One Dimension” (Oxford, 2003) J. Voit “One-Dimensional Fermi Liquids” arXiv:cond-mat/
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Zheng-Yu Weng IAS, Tsinghua University
1 Quantum Choreography: Exotica inside Crystals Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory of Solids: Band Theory.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Mott physics in organic charge-transfer salts Michael Lang J.W. Goethe-Universität Frankfurt Temperature Pressure Mott insulator AF order superconductor.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Minoru Yamashita, Kyoto Univ. Quantum spin liquid in 2D Recipe.
Mott Transition and Superconductivity in Two-dimensional
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first order quantum phase transition Cristian D. Batista and Stuart.
Lecture schedule October 3 – 7, 2011
Superconductivity and magnetism in iron-based superconductor
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG CORRELATIONS
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Quantum phases and critical points of correlated metals
Magnetic, structural and electronic properties of LaFeAsO1-xFx
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Presentation transcript:

2013 Hangzhou Workshop on Quantum Matter, April 22, 2013 Spin frustration and Mott criticality in triangular-lattice organics under controlled Mottness K. Kanoda, Applied Physics, Univ. of Tokyo Univ. of Tokyo H. Oike, T. Furukawa, Y. Shimizu (Nagoya Univ.), H. Hashiba, Y. Kurosaki, K. Umeda, K. Miyagawa, S. Yamashita, Y. Nakazawa M. Maesato, G. Saito (Meijo Univ.) H. Taniguchi Osaka Univ. Kyoto Univ. Saitama Univ. 1. Ground states: SL vs AFM 2. Weak/strong Mott transitions from SL/AFM 3. Quantum criticality at high temperatures (4. Doped triangular lattice) Outline

Mott physics in 2D organics All in one material Charge Mott transition Criticality ? N. Mott (1949) U/W (Mottness) Temperature AF/SL SC Mott insulator Metal Anderson (1973) Superconductivity Pairing origin ? Charge/Spin Spin Frustration AF or Spin Liq. ? Onnes (1911) ?

k-(ET)2X; quasi-triangular lattice systems 0.80 0.44 Ab initio Kandpal et al.(2009) Nakamura et al.(2009)

Mott phase diagrams of quasi-triangular lattices k-(ET)2Cu2(CN)3 t’/t=0.80-1.0 k-(ET)2Cu[N(CN)2]Cl t’/t=0.44-0.75 less frustrated frustrated Similar QC behavior at high T 0.33 >10 1 R/Rc Dissimilar at low T

k-(ET)2Cu[N(CN)2]Cl t’/t ~ 0.44-0.75 Kagawa et al., Nature 2005 , PRL 2004; PRB 2004, Separation of charge localization and spin ordering on triangular lattice k-(ET)2Cu2(CN)3 t’/t ~ 0.80-1.06 Kurosaki et a., PRL 2005, Furukawa et al.unpublished Spin liquid

Thermodynamic anomaly at 6K in k-(ET)2Cu2(CN)3 Specific heat S. Yamashita et al., Nature Phys. 4 (2008) 459 Thermal expansion coefficient Manna et al., PRL 104 (2010) 016403 Thermal conductivity M. Yamashita et al., Nature Phys. 5 (2009) 44 NMR Relaxation rate Shimizu et al., PRB 70 (2006) 060510

13C NMR under a parallel field a decrease in local c line shift a axis B line broadening Field-induced spin texture ? 6K line width

 Degenerate spinons (Motrunich, P.A. Lee, Senthil) Spin liquid in k-(ET)2Cu2(CN)3; Gapless or marginally gapped Specific heat  gapless (g = 13-14 mJ/K2mol) Nuclear Shottky  Degenerate spinons (Motrunich, P.A. Lee, Senthil) k-(ET)2Cu2(CN)3 S. Yamashita et al., , Nature Phys. 4 (2008) 459 g = 13-14 mJ/K2mol Spin liquid k-(ET)2Cu2(CN)3 AF insulator k-(ET)2X, b’-(ET)2ICl2 Thermal conductivity  gapped; 0.46 K M. Yamashita et a., Nature Phys. 5 (2009) 44

Strong Mott transition from antiferromagnet k-(ET)2Cu[N(CN)2]Cl Conductivity Resistance Kagawa et al., Nature 436 (2005) 534

Weak Mott transition from spin liquid k-(ET)2Cu2(CN)3 Phase diagram T-dependence of r P-dependence of r Spin liquid Quantum Mott transition from spin liquid Senthil et al., PRB (2008) and pfreprint Mott transition in spin liquid is weak in contrast to the strong first-order transition from antiferromagnet. T P r-rm=rcf(dzv/T) zv =0.68 ~8h/e2

Mott transition seen in spin degrees of freedom NMR k-(ET)2Cu[N(CN)2]Cl t’/t=0.44-0.75 k-(ET)2Cu2(CN)3 t’/t=0.80-1.0 less frustrated frustrated NMR spectra P P NMR spectra metal Mott trans Mott trans insulator

Holon-doublon pair excitation costs more in AF than in SL J AF U-V(r) +8J Exotic charge excitations in spin liquid state fermionic; Ng & P.A. Lee, PRL 99 (2007) 156402. bosonic; Qi & Sachdev: PRB 77 (2008) 165112 U-V(r) +J SL

Not pseudo-gapped nearby spin liq. Pseudo-gapped nearby AFM Not pseudo-gapped nearby spin liq. Spin liquid ~T3 TC Not pseudo-gapped Deuterated k-Br Miyagawa et al., PRL89 (2002) 017003 Pseudo-gapped 3-4 K 13C NMR 1/T1T k-Cu2(CN)3 12K Shimizu et al., PRB 81 (2010) 224508

Pseudo-gap killed by field and pressure Field dependence Pressure dependence PG has connection with superconductivity as well as spin fluctuations

Ground states of with half-filling Strong Mott from AF Pseudo-gapped High Tc t’/t <1 PG k-(ET)2Cu[N(CN)2]Cl AF SC toward square lattice Frustration (t’/t) Metal k-(ET)2Cu2(CN)3 gapless SL t’/t =1 Weak Mott from SLgapless Not pseudo-gapped low Tc (U/W)critical triangle Mottness (U/W)

DMFT of Hubbard model at high temperatures Quantum Critical Transport Near the Mott Transition H. Terletska et al., PRL 107 (2011) T - t/U phase diagram T T0∝ δ zv T Zv=0.57 Mott Ins. Fermi Iiq. t/U δ=(t/U)-(t/U)c r vs T calc. r vs T/T0 calc. 相図の食い込みいれてもいいかもしれない Resistivities r(T,δ) are scaled with the one parameter, T/T0 Characteristic energy, T0∝δzv  quantum criticality 16

High-T scaling of resistivity for k-(ET)2Cu2(CN)3 Nearly perfect ! P>Pc T/T0 ~T 2 35K, 40K, 45K, 50K, 55K, 60K, 65K, 70K, 75K, 80K, 90K, 100K, 110K d = T0∝ δ zv P<Pc 35K, 40K, 45K, 50K, 55K, 60K, 65K, 70K, 75K, 80K, 90K, 100K, 110K P>Pc T/T0 r(T, d)=rc(T)f(T/T0) Zv=0.60±0.05 T0=c d zv f(T/T0)= exp[(T/T0)1/zv] cf. zv =0.57 (DMFT)

High-T scaling of resistivity for k-(ET)2Cu[N(CN)2]Cl k-(ET)2Cu2(CN)3 P<Pc P<Pc P>Pc T/T0 r(T, d)=rc(T)f(T/T0) Zv=0.50±0.05 T0=c d zv f(T/T0)= exp[(T/T0)1/zv] cf. zv =0.57 (DMFT)

Quantum phase transition Mott Heavy electrons RKKY vs Kondo Kinetic energ vs Coulomb Doniach W ~5000 K U T (K) T (K) QCP Mott ins. Fermi liq. AF Fermi Liq. 20 K t Mott transition

Doped triangular lattice k-(ET)4Hg2.89Br8 ---11% hole doped/ET2 Hg3-dX8 (X=Br, Cl) (ET)2+1+d Hole doping ET layer X layer k-(ET)4Hg2.89Br8 10.01 1.02 Metal/SC Doped triangular lattice Lyubovslaya (1986) Hall coefficient P (GPa) d(1/RH)/dP (C/cm3/GPa) 10K Compressibility of 1/RH U/t t’/t <1/2-filled systems> k-(ET)2Cu2(CN)3 8.20 1.06 k-(ET)2Cu[N(CN)2]Cl 7.58 0.74 k-(ET)2Cu[N(CN)2]Br 7.20 0.68 k-(ET)2Cu(NCS)2 6.98 0.86 k-(ET)2I3 6.48 0.58 Mott insulator Mott insulator (U/t)critical Metal/SC

Conductivity of k-(ET)4Hg2 Conductivity of k-(ET)4Hg2.89Br8 measured by contactless method under pressure R = r0 + aT Non-Fermi liq.  Fermi liq. by pressure Non-Fermi liq. r// - ro∝T r// - ro (mWcm) r// - ro∝T 2 Fermi liq. Temperature (K)

Possible quantum phase transition k-(ET)4Hg2.89Br8 high-Tc cuprate U>W U<W Double occupancy forbidden Small FS ? (Doped Mott; t-J) Double occupancy allowed Large FS ? (Hubbard metal) 22

Conclusion ½-filled systems with variable frustration 1) variation at low temperatures (gapless) SL vs AFM weak Mott strong Mott pseudo-gap no pseudo-gap higher Tc lower Tc 2) universality at high temperatures Mott criticality ---- quantum Even under doped systems A QPT or sharp crossover at (U/W)critical