1 Kaspar Kööp, Marti Jeltsov Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden LEADER 4 th WP5 MEETING, Karlsruhe.

Slides:



Advertisements
Similar presentations
(1) Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 0 | Transient Analysis for the EFIT 3-Zone Core P. Liu, X.-N. Chen,
Advertisements

Idaho National Engineering and Environmental Laboratory SCWR Preliminary Safety Considerations Cliff Davis, Jacopo Buongiorno, INEEL Luca Oriani, Westinghouse.
Relevant Thermal-Hydraulic Aspects in the Design of the RRR A. Doval, C. Mazufri F.P. Moreno Bariloche, Rio Negro, Argentina.
DM1 – WP1.5 meeting Stockholm, May 22-23, First safety approach of the DHR system of XT-ADS B. Arien.
Thermal-Hydraulic Transient Analysis of the Missouri University Research Reactor (MURR) TRTR Annual Meeting September 17-20, 2007 Dr. Robert C. Nelson1,
Preliminary T/H Analyses for EFIT-MgO/Pb Reactor Design WP1.5 Progress Meeting KTH / Stockholm, May 22-23, 2007 G. Bandini, P. Meloni, M. Polidori Italian.
EUROTRANS – DM1 RELAP5 Model Evaluation with SIMMER-III Code and Preliminary Transient Analysis for EFIT Reactor WP5.1 Progress Meeting KTH / Stockholm,
LEADER Project: Task 5.4 Analysis of Representative DBC Events of the ETDR with RELAP5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
LEADER Project: Task 5.4 Analysis of Representative DBC Events of the ETDR with CATHARE G. Geffraye, D. Kadri – CEA/Grenoble G. Bandini - ENEA/Bologna.
HTTF Analyses Using RELAP5-3D Paul D. Bayless RELAP5 International Users Seminar September 2010.
Transmutation and ADS Safety EUROTRANS WP1.5 Meeting, Nov 27-28, Karlsruhe Simulation of EFIT Steam Generator Tube Rupture Accident (U-10) M. Flad, S.
EUROTRANS WP 1.5 Meeting FZK – Karlsruhe, November 27-28, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 EFIT Transients Analysis with RELAP5, SIMMER-III and.
AREVA NP EUROTRANS WP1.5 Technical Meeting Task – ETD Safety approach Safety approach for EFIT: Deliverable 1.21 Lyon, October Sophie.
Transmutation and ADS Safety Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Transient Analysis for EFIT (ENEA 384MWth 3-Zone core) Safety and.
May 22nd & 23rd 2007 Stockholm EUROTRANS: WP 1.5 Task Containment Assessment IP-EUROTRANS DOMAIN 1 Design WP 1.5 Safety Assessment of the Transmutation.
Royal Institute of Technology, Nuclear Power Safety AlbaNova University Center, SE Stockholm, SWEDEN 1 The SGTR Event.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT with RELAP5 and RELAP/PARCS Codes WP5.1 Progress Meeting Empresarios Agrupados - Madrid, November.
EUROTRANS: WP1.5 Technical meeting, Karlsruhe, November 27 – 28, XT-ADS DHR Conceptual Design L. Mansani
EUROTRANS: WP1.5 Technical meeting, Bologna, May 28-29, L. Mansani WP1.2 EFIT and XP-ADS Data.
AREVA NP EUROTRANS WP1.5 Technical Meeting Task – ETD Safety approach Safety approach for XT-ADS: Deliverable 1.20 Lyon, October Sophie.
“Design and safety analysis of ALFRED”
1 Safety studies for MYRRHA B. Arien, S. Heusdains, H. Aït Abderrahim on behalf of the MYRRHA Team and Support IP-Eurotrans Workshop DM1-WP1.5Brussels,
EUROTRANS - Helium cooled EFIT Probabilistic assessment of different DHR designs Karlsruhe, November Sophie EHSTER, Laurent VINCON.
Forschungszentrum Karlsruhe Technik und Umwelt IRS /FzK W.M.SchikorrEUROTRANS WP1.5 Safety Meeting : Karlsruhe, Nov 27-28, EFIT-Pb Transient Analysis.
WP 1.5 Progress Meeting ENEA – Bologna, Italy, May 28-30, 2008 FPN-FISNUC / Bologna EUROTRANS – DM1 Analysis of EFIT Unprotected Accidental Transients.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Nuclear and Energy Technologies.
Nuclear Fundamentals Part II Harnessing the Power of the Atom.
Investigation into the Viability of a Passively Active Decay Heat Removal System In ALLEGRO Laura Carroll, Graduate Physicist Physics & Licensing Team,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
Eric Backus FW System Engineer Exelon - LaSalle Station FSRUG Executive Board Member.
Thermal hydraulic analysis of ALFRED by RELAP5 code & by SIMMER code G. Barone, N. Forgione, A. Pesetti, R. Lo Frano CIRTEN Consorzio Interuniversitario.
Nuclear Research Institute Řež plc 1 DEVELOPMENT OF RELAP5-3D MODEL FOR VVER-440 REACTOR 2010 RELAP5 International User’s Seminar West Yellowstone, Montana.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
LEADER, Task 5.5 ETDR Transient Analyses with SPECTRA Code LEADER Project JRC, Petten, February 26, 2013 M.M. Stempniewicz NRG-22694/
Analyses of representative DEC events of the ETDR
Work Package 2 Giacomo Grasso ENEA UTFISSM-PRONOC LEADER Work Package 2 meeting Madrid, May 8, 2012 Current status and organization of the work.
1. - Condensate pump and feed pump trip! -Turbine trips! 2.
LEADER WP3 Conceptual Design Status KIT Town Office Ostendorfhaus Weberstraße 5, Karlsruhe, Luigi Mansani
ALFRED System Configuration Luigi Mansani
Nuclear Thermal Hydraulic System Experiment
Development of a RELAP5-3D thermal-hydraulic model for a Gas Cooled Fast Reactor D. Castelliti, C. Parisi, G. M. Galassi, N. Cerullo (San Piero A Grado.
EUROTRANS – DM1 ENEA Activities on EFIT Safety Analysis ENEA – FIS/NUC Bologna - Italy WP5.1 Progress Meeting Tractebel / Brussels, March 17, 2006 G. Bandini,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
IAEA Meeting on INPRO Collaborative Project “Performance Assessment of Passive Gaseous Provisions (PGAP)” December, 2011, Vienna A.K. Nayak, PhD.
Safety Analysis Results of the DEC Transients of ALFRED LEADER Lead-cooled European Advanced DEmonstration Reactor G. Bandini (ENEA), E. Bubelis, M. Schikorr.
RELAP5 Analyses of a Deep Burn High Temperature Reactor Core
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
Simulations of Coupled Core and Steam Generator Dynamics (Contribution to Task 4.4: “Preliminary definition of the Control Architecture” Status Report)
ERMSAR 2012, Cologne March 21 – 23, 2012 ESTIMATION OF THERMAL-HYDRAULIC LOADING FOR VVER-1000 UNDER SEVERE ACCIDENT SCENARIO Barun Chatterjee 1, Deb Mukhopadhyay.
LEADER Project Analysis of Representative DBC Events of the ETDR with RELAP5 and CATHARE Giacomino Bandini - ENEA/Bologna Genevieve Geffraye – CEA/Grenoble.
LEADER WP3 Conceptual Design Status KIT Campus North, Karlsruhe, Luigi Mansani
Page 1 Petten 27 – Feb ALFRED and ELFR Secondary System and Plant Layout.
Analysis of Representative DEC Events of the ETDR with RELAP5 LEADER Project: Task 5.5 G. Bandini - ENEA/Bologna LEADER 5 th WP5 Meeting JRC-IET, Petten,
Modeling a Steam Generator (SG)
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT TOWN OFFICE OSTENDORFHAUS Karlsruhe, 21 st November 2012 CIRTEN Consorzio universitario per la ricerca tecnologica nucleare Antonio Cammi, Stefano.
Institute of Safety Research Member Institution of the Scientific Association Gottfried Wilhelm Leibniz DYN3D/ATHLET AND ANSYS CFX CALCULATIONS OF THE.
Italian National Agency for New Technologies, Energy and Environment Advanced Physics Technology Division Via Martiri di Monte Sole 4, Bologna, Italy.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
EUROTRANS – DM1 Preliminary Transient Analysis for EFIT Design WP5.1 Progress Meeting AREVA / Lyon, October 10-11, 2006 G. Bandini, P. Meloni, M. Polidori.
1DEN/CAD/DTN/DIR Genova 2010 April 22nd LEADER WP6 Task 6.3 Assessment, validation and adaptation of oxygen control and purification strategy (CEA-5, ENEA-1,
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institute for Neutron Physics and Reactor.
- Condensate pump and feed pump trip!
Jordan University of Science and Technology
Compact Nuclear Simulation Analysis
- Condensate pump and feed pump trip!
Group 1 Best Group.
Egyptian Atomic Energy Authority (EAEA), Egypt
Presentation transcript:

1 Kaspar Kööp, Marti Jeltsov Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden LEADER 4 th WP5 MEETING, Karlsruhe – 22 nd of November 2012 Analyses of representative DEC events of the ETDR

2 ETDR – ALFRED description Pool-type 300 MWth Core pressure drop 1 bar Temperature –Core inlet 400 C –Core outlet 480 C Coolant velocity –Average 2 m/s –Maximum 3 m/s Lead void effect at EOC (only the fuel zones) –+2 $

3 KTH contribution Transients to be analyzed for Pb-cooled ALFRED Design (LEADER project) Case Number TransientDescription Burnup State Transients analyzed for Lb-cooled ALFRED Design BOCEOC ENEAKIT-GNRGJRC/IETKTH RELAP5SIM-LFRSPECTRA SIMMER / TRACE RELAP5 / CFD code DEC Transients TR-4 Reactivity insertion (enveloping SGTR, flow blockage, core compaction) Reactivity insertion (voiding of part of active region enveloping voids introduction due SGTR, core compaction, fuel blockage) = 250 pcm Reactor at hot full power (HFP) XXXXXX (*)X (**) TO-3 Reduction of FW temperature + all pumps stop Loss of one preheater (feedwater temperature reduction from 335oC down to 300oC) All primary pumps are stopped Reactor is tripped XXXXX TO-6 Increase of FW flowrate+ all pumps stop 20 % increase in feedwater flowrate All primary pumps are stopped Reactor is tripped XXXXX T-DEC1 Complete loss of forced flow + Reactor trip fails (total ULOF) All primary pumps are stopped Feedwater system available Reactor trip fails XXXXXX (*)X T-DEC3 Loss of SCS+ Reactor trip fails (ULOHS) All primary pumps are operating DHR system is operating Reactor trip fails XXXXXX (*) T-DEC4 Loss of off- site power (LOOP) + Reactor trip fails (ULOHS + ULOF) All primary pumps are stopped SCS is lost DHR system is operating Reactor trip fails XXXXX X T-DEC5 Partial blockage in the hottest fuel assembly Reactor trip fails The maximum acceptable flow reduction factor has to be determined XXXXXX T-DEC6SCS failure All primary pumps are operating DHR system totally fails Reactor is tripped XXXXX TR-4 – a transient event due to reactivity insertion (enveloping SGTR, flow blockage, core compaction) T-DEC1 – complete loss of forced flow + SCRAM fail T-DEC4 – complete loss of forced flow, complete loss of SCS, DHR system operating + SCRAM fail

4 TR-4 – Description TR-4 – a transient event due to reactivity insertion (enveloping SGTR, flow blockage, core compaction) We have shown in our previous works that using system TH codes it is not possible "...to investigate whether the steam bubble or bubbles can be dragged downwards towards the core inlet region.“ Steam Generator Tube Leakage (SGTL) is assumed to be the cause for reactivity insertion (voiding of part of active region We address the task on the transport of bubbles that have leaked in the SG to the primary coolant flow Reactor is at hot full power (HFP) Actions: –First thermal-hydraulic part (CFD analysis of bubble transport) –Neutronic part (SERPENT code to look at the consequences of different local core voiding that are typical for SG leakage)

5 TR-4 – Thermal-hydraulics approach Approach: –Develop (or ask from partners) 3D CAD model of primary system of ALFRED according to the latest design provided to LEADER partners. –Create 3D mesh of the primary system for CFD analysis. –Simulate primary coolant flow at normal (HFP) operation conditions with a 3D CFD code (Star-CCM+) –Simulate bubble transport from the SG to the core –Assumptions in modeling of bubble transport: Lagrangian framework Turbulent dispersion Uncertainty in: –bubble size distribution –different correlations for bubble drag in lead –locations of possible leakage from steam generator –leak rate –voiding scenarios –etc. –Assess void accumulation rate in the core accounting for the uncertainties given

6 TR-4 – Neutronics approach Neutronics part of the analysis is foreseen to be done using Serpent Monte Carlo code Input for neutronic calculation –void characteristics: accumulation rates voiding scenarios are input for neutronics calculation –geometry ALFRED model exists in the house

7 T-DEC1&4 ENEA’s RELAP5 model

8 Model steady state ParameterBy designPrevious inputNew input ( ) Nominal reactor power 300 MWth MWth MWth Number of SGs 8 Number of PPs 8 Power removed per SG 37.5 MWth MWth MWth Lead (primary system) Core inlet temperature 400 C K ( C) K ( C) Core outlet temperature 480 C K ( C) K ( C) Mass flow rate *8 kg/s25013 kg/s ( * 8) kg/s ( * 8) Secondary side Pressure 180 bar Imposed 188 bar feed water in Imposed 180 bar steam out Water inlet temperature 335 C K ( C) Steam outlet temperature 450 C k ( C) K ( C) Mass flow rate 24.1 kg/s/SG24.08 kg/s/SG Pressure drop over core0.98 bar

9 T-DEC1 – Description T-DEC1 – complete loss of forced flow + SCRAM fail Pumps are tripped at 1500s Secondary side is operational, IC valves closed

10 T-DEC1 - loss of 8 pumps

11 T-DEC1 - loss of 7 pumps

12 T-DEC4 – Description T-DEC4 – complete loss of forced flow + complete loss of secondary cooling system + SCRAM fail Pumps are tripped at 1500s SCS is tripped at 1500s IC valves opened at s

13 T-DEC4 – loss of flow + loss of SCS + IC valves open ?

14 Next steps Check T-DEC4 results Combine T-DEC1 and T-DEC4 –Only some pumps fail –Only some IC valves open –Possibility of pump/valve recovery Look for –Overcooling/overheating scenarios –High local velocity scenarios –…

15

16 SGTR